
1

Review

John Mitchell
(presented by Vanessa Teague)

CS 242
FINAL EXAM

uWednesday December 13
u7-10pm

uLocation TBD (see class website)
uLocal (Bay Area) SITN students

must come to Stanford

There are many programming languages

uEarly languages
• Fortran, Cobol, APL, ...

uAlgol family
• Algol 60, Algol 68, Pascal, …, PL/1, … Clu, Ada, Modula,

Cedar/Mesa, ...

uFunctional languages
• Lisp, FP, SASL, ML, Miranda, Haskell, Scheme, Setl, ...

uObject-oriented languages
• Smalltalk, Self, Cecil, …

• Modula-3, Eiffel, Sather, …
• C++, Objective C, …. Java

uConcurrent languages
• Actors, Occam, ...

• Pai-Lisp, …

uProprietary and special purpose languages
• TCL, Applescript, Telescript, ...

• Postscript, Latex, RTF, …
• Domain-specific language

uSpecification languages
• CORBA IDL, ...

• Z, VDM, LOTOS, VHDL, …

General Themes in this Course

uLanguage provides an abstract view of machine
• We don’t see registers, length of instruction, etc.

uThe right language can make a problem easy;
wrong language can make a problem hard
• Could have said a lot more about this

uLanguage design is full of difficult trade-offs
• Expressiveness vs efficiency, ...

• Important to decide what the language is for

Good languages designed with specific
goals (often an intended application)

• C: systems programming
• Lisp: symbolic computation, automated reasoning

• FP: functional programming, algebraic laws
• ML: theorem proving

• Clu, ML modules: modular programming
• Simula: simulation

• Smalltalk: Dynabook,
• C++: add objects to C

• Java: set-top box, internet programming

2

A good language design presents abstract
machine, an idealized view of computer

• Lisp: cons cells, read-eval-print loop
• FP: ??

• ML: functions are basic control structure, memory model
includes closures and reference cells

• C: the underlying machine + abstractions
• Simula: activation records and stack; object references

• Smalltalk: objects and methods
• C++: ??

• Java: Java virtual machine

Design Issues

uLanguage design involves many trade-offs
• space vs. time
• efficiency vs. safety
• efficiency vs. flexibility
• efficiency vs. portability
• static detection of type errors vs. flexibility
• simplicity vs. "expressiveness" etc

uThese must be resolved in a manner that
• is consistent with the language design goals
• preserves the integrity of abstract machine

uIn general, high-level languages/features are:
• slower than lower-level languages

– C slower than assembly
– C++ slower than C
– Java slower than C++

• provide for programs that would be
difficult/impossible otherwise
– Microsoft word in assembly language?
– Extensible virtual environment without objects?

Many programs properties are
undecidable (can't determine statically)

• Halting problem
• nil pointer detection

• alias detection
• perfect garbage detection

• etc.

Static type systems
• detect (some) program errors statically

• can support more efficient implementations
• are less flexible than either no type system or a

dynamic one

Some language features go together well

• garbage collection and exception mechanisms

• garbage collection and first-class functions

Languages are still evolving

• Object systems
• Adoption of garbage collection

• Concurrency primitives; abstract view of concurrent
systems

• Domain-specific languages
• Network programming

3

Summary of Course

uLisp, 1960
uFundamentals

• lambda calculus

• denotational semantics
• functional prog

uML and type systems
uBlock structure and

activation records
uExceptions and

continuations

uModularity and
Abstractions
uOO concepts

• encapsulation

• dynamic lookup
• subtyping

• inheritance

uSimula and Smalltalk
uC++
uJava

Lisp Summary

uSuccessful language
• Symbolic computation, experimental programming

uSpecific language ideas
• Expression-oriented: functions and recursion
• Lists as basic data structures
• Programs as data, with universal function eval
• Stack implementation of recursion via "public

pushdown list"
• Idea of garbage collection.

Fundamentals

uComputability and The Halting Problem
uGrammars, parsing
uLambda calculus
uDenotational semantics
uFunctional vs. Imperative Programming

• Is implicit parallelism a good idea?

• Is implicit anything a good idea?

Algol Family and ML

uEvolution of Algol family
• Recursive functions and parameter passing

• Evolution of types and data structuring

uML: Combination of Lisp and Algol- like features
• Expression-oriented

• Higher-order functions
• Garbage collection

• Abstract data types
• Module system

• Exceptions

Goals in study of ML

uSurvey a modern procedural language
uDiscuss general programming languages issues

• Types and type checking
– General issues in static/dynamic typing
– Type inference
– Polymorphism and Generic Programming

• Memory management
– Static scope and block structure
– Function activation records, higher-order functions

• Control
– Force and delay
– Exceptions
– Tail recursion and continuations

Main Points about ML

uGeneral-purpose procedural language
• We have looked at “core language” only

• Also: abstract data types, modules, concurrency,….

uWell-designed type system
• Type inference

• Polymorphism
• Reliable -- no loopholes

• Limited overloading
• Q: what is cost associated with polymorphism?

Compare: C++ templates are expanded at compile-time

4

Block structure and storage mgmt

uBlock-structured languages and stack storage
uIn-line Blocks

• activation records

• storage for local, global variables

uFirst-order functions
• parameter passing
• tail recursion and iteration

uHigher-order functions
• deviations from stack discipline
• language expressiveness => implementation complexity

Summary of scope issues

uBlock-structured lang uses stack of activ records
• Activation records contain parameters, local vars, …

• Also pointers to enclosing scope

uSeveral different parameter passing mechanisms
uTail calls may be optimized
uFunctions as parameters/results require closures

• Closure environment pointer used on function call
• Stack deallocation may fail if function returned from call

• Closures not needed if functions not in nested blocks

Control

uStructured Programming
• Go to considered harmful

uExceptions
• “structured” jumps that may return a value
• dynamic scoping of exception handler

uContinuations
• Function representing the rest of the program

• Generalized form of tail recursion

Modularity and Data Abstraction

uStep-wise refinement and modularity
• History of software design

uLanguage support for information hiding
• Abstract data types
• Datatype induction

• Packages and modules

uGeneric abstractions
• Datatypes and modules with type parameters
• Design of STL

Concepts in OO programming

uFour main language ideas
• Encapsulation

• Dynamic lookup
• Subtyping

• Inheritance

uWhy OOP ?
• Extensible abstractions; separate interface from impl

uCompare oo to conventional (non-oo) lang
• Can represent encapsulation and dynamic lookup

• Need inheritance and subtyping as basic constructs

Simula 67

uFirst object-oriented language
uDesigned for simulation

• Later recognized as general-purpose prog language

uExtension of Algol 60
uStandardized as Simula (no “67”) in 1977
uInspiration to many later designers

• Smalltalk
• C++

• ...

5

Objects in Simula

uClass
• A procedure that returns a pointer to its activation record

uObject
• Activation record produced by call to a class

uObject access
• Access any local variable or procedures using dot

notation: object.

uMemory management
• Objects are garbage collected
• ?? Simula Begin pg 48-49: user destructors undesirable

Smalltalk

uMajor language that popularized objects
uDeveloped at Xerox PARC 1970’s (Smalltalk -80)

uObject metaphor extended and refined
• Used some ideas from Simula, but very different lang
• Everything is an object, even a class

• All operations are “messages to objects”
• Very flexible and powerful language

– Similar to “everything is a list” in Lisp, but more so

uMethod dictionary and lookup procedure
• Run-time search; no static type system

uIndependent subtyping and inheritance

C++

uDesign Principles: Goals, Constraints

uObject-oriented features
• Some good decisions, some problem areas

uClasses, Inheritance and Implementation
• Base class and Derived class (inheritance)

• Run-time structures: offset known at compile time

uSubtyping
• Subtyping principles

• Abstract base classes
• Specializing types of public members

uMultiple Inheritance

Java Summary

uObjects
• have fields and methods

• alloc on heap, access by pointer, garbage collected

uClasses
• Public, Private, Protected, Package (not exactly C++)

• Can have static (class) members
• Constructors and finalize methods

uInheritance
• Single inheritance

• Final classes and methods

Java Summary (II)

uSubtyping
• Determined from inheritance hierarchy

• Class may implement multiple interfaces

uVirtual machine
• Load bytecode for classes at run time

• Verifier checks bytecode
• Interpreter also makes run-time checks

– type casts
– array bounds
– …

• Portability and security are main considerations

