
1

Scope, Function Calls and
Storage Management

John Mitchell

CS 242

Topics

u Block-structured languages and stack storage
u In-line Blocks

• activation records

• storage for local, global variables

u First-order functions
• parameter passing
• tail recursion and iteration

u Higher-order functions
• deviations from stack discipline
• language expressiveness => implementation complexity

Block-Structured Languages

u Nested blocks, local variables
• Example

{ int x = 2;
{ int y = 3;

x = y+2;
}

}

• Storage management
– Enter block: allocate space for variables
– Exits block: some or all space may be deallocated

new variables declared in nested blocks

inner
block

outer
block

local variable

global variable

Examples

u Blocks in common languages
• C { … }

• Algol begin … end
• ML let … in … end

u Two forms of blocks
• In-line blocks
• Blocks associated with functions or procedures

u Topic: block-based memory management,
access to local variables, parameters,global vars

Simplified Machine Model

Registers

Environment
Pointer

Program
Counter

DataCode

Heap

Stack

Interested in Memory Mgmt Only

u Registers, Code segment, Program counter
• Ignore registers

• Details of instruction set will not matter

u Data Segment
• Stack contains data related to block entry/exit

• Heap contains data of varying lifetime
• Environment pointer points to current stack position

– Block entry: add new activation record to stack

– Block exit: remove most recent activation record

2

Some basic concepts

u Scope
• Region of program text where declaration is visible

u Lifetime
• Period of time when location is allocated to program

• Inner declaration of x hides outer one.

• Called “hole in scope”
• Lifetime of outer x includes time when

inner block is executed

• Lifetime ≠ scope
• Lines indicate “contour model” of scope.

{ int x = … ;

{ int y = … ;
{ int x = … ;
….
};

};

};

In-line Blocks

u Activation record
• Data structure stored on run-time stack

• Contains space for local variables

u Example

May need space for variables and intermediate results like (x+y), (x-y)

{ int x=0;

int y=x+1;

{ int z=(x+y)*(x-y);

};

};

Push record with space for x, y
Set values of x, y

Push record for inner block
Set value of z
Pop record for inner block

Pop record for outer block

Activation record for in-line block

u Control link
• pointer to previous record

on stack

u Push record on stack:
• Set new control link to

point to old env ptr

• Set env ptr to new record

u Pop record off stack
• Follow control link of

current record to reset
environment pointer

Control link

Local variables

Intermediate results

Control link

Local variables

Intermediate results

Environment
Pointer

Example

{ int x=0;

int y=x+1;

{ int z=(x+y)*(x-y);

};

};

Push record with space for x, y
Set values of x, y

Push record for inner block
Set value of z
Pop record for inner block

Pop record for outer block

Control link

x

y

0

1

x+y

x-y

Environment
Pointer

1

-1

Control link

z -1

Scoping rules

u Global and local variables
{ int x=0;

int y=x+1;

{ int z=(x+y)*(x-y);

};

};

• x, y are local to outer block

• z is local to inner bock
• x, y are global to inner block

u Static scope
• global refers to declaration in closest enclosing block

u Dynamic scope
• global refers to most recent activation record

These are same until we consider function calls.

Functions and procedures

u Syntax of procedures (Algol) and functions (C)
procedure P (<pars>) <type> function f(<pars>)

begin {
<local vars> <local vars>

<proc body> <proc body>
end; };

u Activation record must include space for
• parameters
• return address

• return value
(an intermediate result)

• location to put return
value on function exit

3

Activation record for function

u Return address
• Location of code to

execute on function return

u Return-result address
• Address in activation

record of calling block to
receive return address

u Parameters
• Locations to contain data

from calling block

Control link

Local variables

Intermediate results

Environment
Pointer

Parameters

Return address

Return-result addr

Example

u Function
fact(n) = if n<= 1 then 1

else n * fact(n-1)

u Return result address
• location to put fact(n)

u Parameter
• set to value of n by calling

sequence

u Intermediate result
• locations to contain value

of fact(n-1)

Control link

Local variables

Intermediate results

Environment
Pointer

Parameters

Return address

Return result addr

Control link

fact(n-1)

n
Return-result addr

3

fact(3)

Function call

Return address omitted; would
be ptr into code segment

Control link

fact(n-1)
n

Return-result addr

2

fact(2)

fact(n) = if n<= 1 then 1

else n * fact(n-1)

Control link

fact(n-1)
n

Return-result addr

k

fact(k)

Environment
Pointer

Control link

fact(n-1)

n

Return-result addr

1

fact(1)

Function return next slide →

Function return

Control link

fact(n-1)
n

Return result addr

3

fact(3)

Control link

fact(n-1)

n

Return result addr

1

2

fact(2)

Control link

fact(n-1)

n

Return result addr

1

fact(1)

fact(n) = if n<= 1 then 1
else n * fact(n-1)

Control link

fact(n-1)
n

Return result addr

2
3

fact(3)

Control link

fact(n-1)

n

Return result addr

1

2

fact(2)

Topics for first-order functions

u Parameter passing
• use ML reference cells to describe pass-by-value,

pass-by-reference

u Access to global variables
• global variables are contained in an activation record

higher “up” the stack

u Tail recursion
• an optimization for certain recursive functions

See this yourself: write factorial and run under debugger

ML imperative features (review)

u General terminology: L-values and R-values
• Assignment y := x+3

– Identifier on left refers to location, called its L-value
– Identifier on right refers to contents, called R-value

u ML reference cells and assignment
• Different types for location and contents

x : int non-assignable integer value
y : int ref location whose contents must be integer
!y the contents
ref x expression creating new cell initialized to x

• ML form of assignment
y := x+3 place value of x+3 in location (cell) y
y := !y + 3 add 3 to contents of y and store in location y

4

Parameter passing

u Pass-by-reference
• Caller places L-value (address) of actual parameter in

activation record
• Function can assign to variable that is passed

u Pass-by-value
• Caller places R-value (contents) of actual parameter

in activation record
• Function cannot change value of variable used by

caller

• Reduces aliasing (alias: two names refer to same loc)

Example

function f (x) =
{ x := x+1; return x };

var y : int = 0;
print f(y)+y;

fun f (x : int ref) =
(x := !x+1; !x);

y = ref 0 : int ref;
f(y) + !y;

fun f (z : int) =
let x = ref z in

x := !x+1; !x
end;

y = ref 0 : int ref;
f(!y) + !y;

pseudo-code Standard ML

pass-b
y-ref

pass-by-value

Access to global variables

u Two possible scoping conventions
• Static scope: refer to closest enclosing block

• Dynamic scope: most recent activation record on stack

u Example

int x=1;
function g(z) = x+z;

function f(y) =
{ int x = y+1;
return g(y*x) };

f(3);

x 1

x 4

y 3

z 12

outer block

f(3)

g(12)

Which x is used for expression x+z ?

Activation record for static scope

u Control link
• Link to activation record of

previous (calling) block

u Access link
• Link to activation record of

closest enclosing block in
program text

u Difference
• Control link depends on

dynamic behavior of prog
• Access link depends on

static form of program text

Control link

Local variables

Intermediate results

Environment
Pointer

Parameters

Return address

Return result addr

Access link

Static scope with access links

int x=1;
function g(z) = x+z;

function f(y) =
{ int x = y+1;
return g(y*x) };

f(3);

x 1

x 4
y 3

z 12

outer block

f(3)

g(12) control link
access link

g …

f …

control link
access link

control link
access link

access link
control link

Use access link to find global variable:
– Access link is always set to frame

of closest enclosing lexical block
– For function body, this is block

that contains function declaration

Tail recursion (first-order case)

u Function g makes a tail call to function f if
• Return value of function f is return value of g

u Example

fun g(x) = if x>0 then f(x) else f(x)*2

u Optimization
• Can pop activation record on a tail call

• Especially useful for recursive tail call
– next activation record has exactly same form

tail call not a tail call

5

Example Calculate least power of 2 greater than y

fun f(x,y) = if x>y
then x

else f(2*x, y);
f(1,3) + 7;

control

return val
x 1

y 3

control

return val
x 1

y 3

control

return val

x 2

y 3

control

return val

x 4
y 3

f(1,3) Optimization
• Set return

value address
to that of caller

Question
• Can we do the

same with
control link?

Optimization
• avoid return to

caller

Tail recursion elimination

fun f(x,y) = if x>y
then x

else f(2*x, y);
f(1,3);

control
return val

x 1

y 3

f(4,3)

Optimization
• pop followed by push =

reuse activation record in place

Conclusion
• Tail recursive function equiv to

iterative loop

control
return val

x 2

y 3

f(1,3)

control
return val

x 4

y 3

f(2,3)

Tail recursion and iteration

fun f(x,y) = if x>y

then x
else f(2*x, y);

f(1,y);

control
return val

x 1

y 3

f(4,3)

control
return val

x 2

y 3

f(1,3)

control
return val

x 4

y 3

f(2,3)

fun g(y) = {

x := 1;
while not(x>y) do

x := 2*x;

return x;
};initial value

loop body

test

Higher-Order Functions

u Language features
• Functions passed as arguments

• Functions that return functions from nested blocks
• Need to maintain environment of function

u Simpler case
• Function passed as argument
• Need pointer to activation record “higher up” in stack

u More complicated second case
• Function returned as result of function call

• Need to keep activation record of returning function

Example

u Map function
fun map (f, nil) = nil | map(f, x::xs) = f(x) :: map(f,xs)

u Modify repeated elements in list
fun modify(l) =

let val c = ref (hd l)

fun f(y) = ((if y = !c then c:=y+1 else c:=y); !c)
in

(hd l) :: map(f, tl l)
end;

modify [1,2,2,3,4] => [1,2,3,4,5]
Exercise: pure functional version of modify

Pass function as argument

val x = 4;
fun f(y) = x*y;

fun g(h) = let
val x=7
in
h(3) + x;

g(f);

There are two declarations of x
Which one is used for each occurrence of x?

{ int x = 4;
{ int f(int y) {return x*y;}

{ int g(int→int h) {
int x=7;
return h(3) + x;

}
g(f);

} } }

6

Static Scope for Function Argument

val x = 4;
fun f(y) = x*y;

fun g(h) =
let

val x=7
in

h(3) + x;
g(f);

x 4

h

y 3

f

g

Code
for f

Code
for gg(f)

h(3)

x * y

x 7

follow access link
local var

How is access link for h(3) set?

Static Scope for Function Argument

{ int x = 4;
{ int f(int y) {return x*y;}

{ int g(int→int h) {

int x=7;
return h(3) + x;

}
g(f);

} } }

x 4

h

y 3

f

g

Code
for f

Code
for gg(f)

h(3)

x * y

x 7

follow access link
local var

How is access link for h(3) set?

Closures

u Function value is pair closure = 〈env, code 〉
u When a function represented by a closure is

called,
• Allocate activation record for call (as always)

• Set the access link in the activation record using the
environment pointer from the closure

A Conversation with Paul Graham

CACM:
So how do you solve keeping track of state?

Graham:
We consider that a trade secret. But I can say that
we rely heavily on an abstraction called lexical
closures, which only Lisp makes convenient. If you
tried to write something like Viaweb in a language
without closures, like C++ or Java, you would be in
trouble from the start.

May 1998 CACM

Paul Graham is an entrepreneur working on electronic commerce
(Thanks to Amit Patel)

Function Argument and Closures

val x = 4;
fun f(y) = x*y;

fun g(h) =
let

val x=7
in

h(3) + x;
g(f);

x 4

access link set
from closure

Code
for f

f
access

Run-time stack with access links

Code
for g

h(3)
y 3

access

g(f)
h

access

x 7

g
access

Function Argument and Closures

{ int x = 4;

{ int f(int y){return x*y;}

{ int g(int→int h) {

int x=7;

return h(3)+x;

}

g(f);

}}}

x 4

access link set
from closure

Code
for f

f
access

Code
for g

g
access

g(f)
h

access

x 7

h(3)
y 3

access

7

Summary: Function Arguments

u Use closure to maintain a pointer to the static
environment of a function body

u When called, set access link from closure
u All access links point “up” in stack

• May jump past activ records to find global vars

• Still deallocate activ records using stack (lifo) order

Return Function as Result

u Language feature
• Functions that return “new” functions
• Need to maintain environment of function

u Example
fun compose(f,g) = (fn x => g(f x));

u Function “created” dynamically
• expression with free variables

values are determined at run time

• function value is closure = 〈env, code〉
• code not compiled dynamically (in most languages)

Example: Return fctn with private state

fun mk_counter (init : int) =
let val count = ref init

fun counter(inc:int) =

(count := !count + inc; !count)
in

counter
end;

val c = mk_counter(1);
c(2) + c(2);

• Function to “make counter”
returns a closure

• How is correct value of
count determined in c(2) ?

Example: Return fctn with private state

{int→int mk_counter (int init) {
int count = init;

int counter(int inc) { return count += inc;}
return counter}

int→int c = mk_counter(1);
print c(2) + c(2);

}

Function to “make counter” returns a closure
How is correct value of count determined in call c(2) ?

Function Results and Closures
fun mk_counter (init : int) =

let val count = ref init
fun counter(inc:int) = (count := !count + inc; !count)

in counter end

end;
val c = mk_counter(1);

c(2) + c(2); c
access

Code for
counter

Code for
mk_counter

c(2) access
inc 2

1mk_counter(1)

count
init 1

access

counter

mk_c

Call changes cell
value from 1 to 3

3

Function Results and Closures

c
access

Code for
counter

Code for
mk_counter

mk_c

c(2) access
inc 2

1mk_counter(1)

count
init 1

access

counter

Call changes cell
value from 1 to 3

3

{int→int mk_counter (int init) {
int count = init; int counter(int inc) { return count+=inc;}
}

int→int c = mk_counter(1);

print c(2) + c(2);
}

8

Summary: Return Function Results

u Use closure to maintain static environment
u May need to keep activation records after return

• Stack (lifo) order fails!

u Possible “stack” implementation
• Forget about explicit deallocation

• Put activation records on heap
• Invoke garbage collector as needed

• Not as totally crazy as is sounds
May only need to search reachable data

Summary of scope issues

u Block-structured lang uses stack of activ records
• Activation records contain parameters, local vars, …

• Also pointers to enclosing scope

u Several different parameter passing mechanisms
u Tail calls may be optimized
u Function parameters/results require closures

• Closure environment pointer used on function call
• Stack deallocation may fail if function returned from call

• Closures not needed if functions not in nested blocks

