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Types

John Mitchell

CS 242

Type

A type is a collection of computable values that 
share some structural property.

u Examples
• Integers
• Strings

• int → bool
• (int → int) →bool

u “Non-examples”
• {3, true, λx.x}
• Even integers

• {f:int → int | if x>3   
then f(x) > x*(x+1)}

Distinction between types and non-types is language 
dependent.

Types can be associated with

u Syntax
• Expressions, functions, modules, etc. given types

• Examples
– x+3 : int,   f : int → real
– M : module{ y: int,  g : int → int,  h : int → unit}

u Semantics
• A value stored in a register or stored in memory can 

have an associated type
• Examples

– Location can contain integer or pointer
– Set of locations can represent data structure

Uses for types 

u Program organization and documentation   (syntax)

• Separate types for separate concepts
– Represent concepts from problem domain 

• Indicate intended use of declared identifiers
– Types can be checked, unlike program comments

u Identify and prevent errors (syntax or semantics)

• Compile-time or run-time checking can prevent 
meaningless computations such as  3 + true - “Bill”

u Support optimization                     (semantics)

• Example: short integers require fewer bits

• Access record component by known offset

Type errors at run time

u Hardware error
• function call x() where x is not a function

• may cause jump to instruction that does not contain 
a legal op code

u Unintended semantics
• int_add(3, 4.5)

• not a hardware error, since bit pattern of float 4.5 
can be interpreted as an integer

• may be just as much an error as x() above

General definition of type error

u A type error occurs when execution of program 
is not faithful to the intended semantics

u Do you like this definition?
• If we store 4.5 in memory as a floating-point 

number, we will get a particular bit pattern. To 
interpret that pattern, we need to know both the 
pattern and the type. If we pass this pattern to an 
integer addition function, the pattern will be 
interpreted as an integer pattern, causing a type 
error.
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Compile-time vs run-time checking

u Lisp uses run-time type checking
(car x)    check first to make sure x is list

u ML uses compile-time type checking
f(x) must have f : A → B and x : A

u Basic tradeoff
• Both prevent type errors
• Run-time checking slows down execution

• Compile-time checking restricts program flexibility
Lisp list: elements can have different types
ML list: all elements must have same type 

Expressiveness

u In Lisp, can write function like
(lambda (x)  (cond ((less x 10)  x)  (T  (car x))))

u Static typing always conservative 
if  (big-hairy-boolean-expression) 

then  3+5

else   4+true

Cannot determine statically whether error will occur at run-time

Relative type-safety of languages 

u Not safe: BCPL family, including C and C++
• Casts,  pointer arithmetic

u Almost safe: Algol family, Pascal, Ada. 
• Dangling pointers. 

– Allocate a pointer p to an integer, deallocate the memory 
referenced by p, then later use the value pointed to by p 

– No language with explicit deallocation of memory is fully 
type-safe

u Safe: Lisp, ML, Smalltalk, and Java 
• Lisp, Smalltalk: dynamically typed 

• ML, Java: statically typed

Type checking and type inference

u Standard type checking
int f(int x) { return x+1; };

int g(int y) { return f(y+1)*2;};
• Look at body of each function and use declared types 

of identifies to check agreement.

u Type inference
int f(int x) { return x+1; };
int g(int y) { return f(y+1)*2;};

• Look at code without type information and figure out 
what types could have been declared.

ML is designed to make type inference tractable.

Type soundness

u Correspondence between syntax and semantics
u Sound syntactic type

val x = 3;

x+4 –5  : int

u Unsound syntactic type
val x = 3;
if true then else “fido”  : string

u General requirement, called type soundness:
• If expression e is assigned syntactic type τ, then 

evaluation of expression e must produce a value with 
semantic type τ

ML Type Inference

u Example
- fun f(x) = 2+x;

> val it = fn : int → int          (Is this sound?)

u How does this work?
• + has two types: int*int → int, real*real→ real

• 2 : int has only one type
• This implies + : int*int → int 

• From context, need x: int
• Therefore f(x:int) = 2+x has type int → int

Overloaded + is unusual. Most ML symbols have unique type. 
In many cases, unique type may be polymorphic.
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Another presentation 

u Example
- fun f(x) = 2+x;

> val it = fn : int → int

u How does this work?

x 

λ

@

@

+ 2

Assign types to leaves

: t

int*int → int
real*real→real

: int

Propagate to internal 
nodes and generate 
constraints

int    (t = int)

int→int

t→int   

Solve by substitution

= int→int

Graph for λx. ((plus 2) x)

Application and Abstraction 

u Application

• f must have function type   
domain→ range

• domain of f must be type 
of argument x 

• result type is range of f

u Function expression
• Type is function type 

domain→ range
• Domain is type of variable x
• Range is type of function 

body e 

x

@

f x

λ

e: t: s : s : t

: r    (s = t→ r) : s → t

Types with type variables 

u Example
- fun f(g) = g(2);

> val it = fn : (int → t) → t

u How does this work?

2 

λ

@

g

Assign types to leaves

: int: sPropagate to internal 
nodes and generate 
constraints

t    (s = int→t )

s→t

Solve by substitution

= (int→t)→t 

Graph for λg. (g 2)

Use of Polymorphic Function

u Function
- fun f(g) = g(2);

> val it = fn : (int → t) → t

u Possible applications
- fun add(x) = 2+x;

> val it = fn : int → int
- f(add);

> val it = 4 : int 

- fun isEven(x) = ...;
> val it = fn : int → bool

- f(isEven);
> val it = true : bool

Recognizing type errors

u Function
- fun f(g) = g(2);

> val it = fn : (int → t) → t

u Incorrect use
- fun not(x) = if x then false else  true;

> val it = fn : bool → bool
- f(not);

Type error: cannot make bool → bool = int → t

Another Type Inference Example 

u Function Definition
- fun f(g,x) = g(g(x));

> val it = fn : (t → t)*t → t

u Type Inference

Solve by substitution

= (v→v)*v→v 
λ

@

g

x

@

g

Assign types to leaves

: t

: s

: s

Propagate to internal 
nodes and generate 
constraints

v     (s = u→v)

s*t→v

u   (s = t→u)

Graph for λ〈g,x〉. g(g x)
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Polymorphic Datatypes

u Datatype with type variable    ’a is syntax for “type variable a”

- datatype ‘a list = nil | cons of ‘a*(‘a list)

> nil : ‘a list 
> cons : ‘a*(‘a list) → ‘a list

u Polymorphic function
- fun length nil = 0

|    length (cons(x,rest)) = 1 + length(rest)

>  length : ‘a list → int

u Type inference 
• Infer separate type for each clause
• Combine by making two types equal (if necessary)

Type inference with recursion

u Second Clause
length(cons(x,rest)) = 

1 + length(rest)

u Type inference
• Assign types to 

leaves, including 
function name

• Proceed as usual
• Add constraint that 

type of function body 
= type of function 
name

rest

x

@

lenght

@

cons

+ 1

@

@

: t

λ
‘a list→int = t

: ‘a*‘a list     
→‘a list

We do not expect you to master this.

Main Points about Type Inference

u Compute type of expression
• Does not require type declarations for variables

• Find most general type by solving constraints
• Leads to polymorphism

u Static type checking without type specifications
u May lead to better error detection than ordinary 

type checking
• Type may indicate a programming error even if there 

is no type error (example following slide).

Information from type inference

u An interesting function on lists
fun reverse (nil) = nil

|     reverse (x::lst) = reverse(lst);

u Most general type
reverse : ‘a list → ‘b list

u What does this mean? 
Since reversing a list does not change its type, 
there must be an error in the definition of 
“reverse”

Polymorphism vs Overloading

u Parametric polymorphism
• Single algorithm may be given many types

• Type variable may be replaced by any type
• f : t→t => f : int→int, f : bool→bool, ...

u Overloading
• A single symbol may refer to more than one algorithm
• Each algorithm may have different type

• Choice of algorithm determined by type context
• Types of symbol may be arbitrarily different

• + has types  int*int→int, real*real→real, no others

ML Overloading

u Some predefined operators are overloaded
u User-defined functions must have unique type

- fun plus(x,y) = x+y;

> Error: overloaded variable cannot be resolved: +

u Why is a unique type needed?
• Need to compile code ⇒ need to know which +
• Efficiency of type inference

• Aside: General overloading is NP-complete
Two types, true and false
Overloaded functions

and : {true*true→true, false*true→false, …}


