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Data Abstraction and Modularity

John Mitchell

CS 242

Topics

u Modular program development
• Step-wise refinement

• Interface, specification, and implementation

u Language support for modularity
• Procedural abstraction

• Abstract data types
– Representation independence
– Datatype induction

• Packages and modules
• Generic abstractions

– Functions and modules with type parameters

Stepwise Refinement

u Wirth, 1971 
• “… program ... gradually developed in a sequence of 

refinement steps”
• In each step, instructions …  are decomposed into 

more detailed instructions. 

Dijkstra’s Example               (1969)

begin

print first 1000 primes
end begin

variable table p

fill table p with first 1000       
primes

print table p
end

begin
int array p[1:1000]
make for k from 1 to 1000

p[k] equal to k-th prime

print p[k] for k from 1 to 1000
end

Program Structure

Main Program

Sub-program Sub-program Sub-program

Sub-programSub-program

Data Refinement

u Wirth, 1971 again:
• As tasks are refined, so the data may have to be 

refined, decomposed, or structured, and it is natural 
to refine program and data specifications in parallel. 
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Example

u For level 2, represent account 
balance by integer variable

u For level 3, need to maintain 
list of past transactions

Bank Transactions

Deposit Withdraw Print Statement

Print transaction 
history

Modular program design

u Top-down design
• Begin with main tasks, successively refine

u Bottom-up design
• Implement basic concepts, then combine

u Prototyping
• Build coarse approximation of entire system
• Successively add functionality

Modularity

u Component
• Meaningful program unit

– Function, data structure, module, …

u Interface
• Types and operations defined within a component 

that are visible outside the component

u Specification
• Intended behavior of component, expressed as 

property observable through interface 

u Implementation
• Data structures and functions inside component

Example: Function Component

u Component
• Function to compute square root

u Interface
• float sqroot (float x)

u Specification
• If x>1, then sqrt(x)*sqrt(x) ≈ x.

u Implementation
float sqroot (float x){

float y = x/2; float step=x/4; int i;

for (i=0; i<20; i++){if ((y*y)<x) y=y+step; else y=y -step; step = step/2;}

return y;

}

Example: Data Type

u Component
• Priority queue: data structure that returns elements 

in order of decreasing priority

u Interface
• Type: pqueue
• Operations: empty : int*/…

Heap sort using library data structure

u Priority queue:  structure with three operations
empty      : pq
insert       : elt * pq → pq

deletemax : pq → elt * pq

u Algorithm using priority queue (heap sort)

begin 
empty pq s

insert each element from array into s
remove elements in decreasing order and place in array

end

This gives us an  O(n log n) sorting algorithm    (see HW)
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Language support for info hiding

u Procedural abstraction
• Hide functionality in procedure or function

u Data abstraction
• Hide decision about representation of data structure 

and implementation of operations
• Example: priority queue can be binary search tree or 

partially-sorted array

In procedural languages, refine a procedure or data type 
by rewriting it. Incremental reuse later with objects.

Abstract Data Types

u Prominent language development of 1970’s
u Main ideas:

• Separate interface from implementation
– Example: 

• Priority queues have empty, insert, deletemax
• Priority queues implemented as …

• Use type checking to enforce separation
– Client program only has access to operations in interface
– Implementation encapsulated inside ADT construct

Origin of Abstract Data Types

u Structured programming, data refinement
• Write program assuming some desired operations

• Later implement those operations 
• Example:

– Write expression parser assuming a symbol table
– Later implement symbol table data structure

u Research on extensible languages
• What are essential properties of built -in types?

• Try to provide equivalent user-defined types 
• Example:

– ML sufficient to define list type that is same as built-in lists

Comparison with built-in types

u Example: int
• Can declare variables of this type   x: int

• Specific set of built-in operations    +, -, *, …
• No other operations can be applied to integer values

u Similar properties desired for abstract types
• Can declare variables  x : abstract_type
• Define a set of operations (give interface)

• Language guarantees that only these operations can 
be applied to values of abstract_type

Clu Clusters     

complex = cluster is 
make_complex, real_part, imaginary_part, plus, times

rep = struct [ re, im : real]
make_complex = proc (x,y : real) returns (cvt)

return (rep${re:x, im:y})
real_part = proc (z:cvt) returns real

return (z.re)
imaginary_part = proc (z:cvt) returns real

return (z.im)
plus = proc (z, w: cvt) returns (cvt)

return (rep${ re: z.re+w.re, im: z.im+w.im })
mult = proc …

end complex 

ML Abstype

u Declare new type with values and operations
abstype t = <tag> of <type> 

with
val <pattern> =  <body>

...
fun f(<pattern>) =  <body>

...
end

u Representation
t = <tag> of <type>   similar to ML datatype decl
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Abstype for Complex Numbers

u Input
abstype cmplx = C of real * real with 

fun cmplx(x,y: real) = C(x,y) 

fun x_coord(C(x,y)) = x 

fun y_coord(C(x,y)) = y 
fun add(C(x1,y1), C(x2,y2)) = C(x1+x2, y1+y2) 

end

u Types (compiler output)
type cmplx

val cmplx = fn : real * real -> cmplx

val x_coord= fn : cmplx -> real

val y_coord = fn : cmplx -> real
val add = fn : cmplx * cmplx -> cmplx

Abstype for finite sets

u Declaration
abstype 'a set = SET of 'a list with

val empty = SET(nil) 

fun insert(x, SET(elts)) = ... 

fun union(SET(elts1), Set(elts2)) = ... 
fun isMember(x, SET(elts)) = ... 

end 

u Types    (compiler output)
type 'a set
val empty = - : 'a set

val insert = fn : 'a * ('a set) -> ('a set)

val union = fn : ('a set) * ('a set) -> ('a set)

val isMember = fn : 'a * ('a set) -> bool

Encapsulation Principles

u Representation Independence
• Elements of abstract type can be implemented in 

various ways
• Restricted interface -> client program cannot 

distinguish one good implementation from another

u Datatype Induction
• Method for reasoning about abstract data types
• Relies on separation between interface and 

implementation

Representation Independence

u Integers
• Can represent 0,1,2, …, -1,-2, … any way you want

• As long as operations work properly
+, -, *, /, print, …

• Example
1’s complement vs. 2’s complement

u Finite Sets
• can represent finite set {x, y, z, … } any way you want

• As long as operations work properly
empty, ismember?, insert, union

• Example
linked list vs binary tree vs bit vector

Reality or Ideal?

u In Clu, ML, … rep independence is a theorem
• Can be proved because language restricts access to 

implementation: access through interface only

u In C, C++, this is an ideal
• “Good programming style” will support representation 

independence

• The language does not enforce it 
Example: print bit representation of -1
This distinguishes 1’s complement  from  2’s complement

Induction         (Toward Datatype Induction)

u Main idea
• 0 is a natural number

• if x is a natural number, then x+1 is a natural number
• these are all the natural numbers

u Prove p(n) for all n
• prove p(0)
• prove that if p(x) then p(x+1)

• that’s all you need to do
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Induction for integer lists

u Principle
• nil is a list

• if y is a list and x is an int, then cons(x,y) is a list
• these are all of the lists 

u Prove p(y) for all lists y
• prove p(nil)
• prove that if p(y) then p(cons(x,y))

• that’s all you need to do

u Example: next slide
• Note: we do not need to consider car, cdr
• Why? No new lists. (No subtraction in integer induction.)

Example of list induction

u Function to sort lists
• fun sort(nil) = nil

• |     sort(x::xs) = insert(x, sort(xs))

u Insertion into sorted list
• fun insert(x, nil) = [x]

• |    insert(x, y::ys) = if x<y then x::(y::ys) 
• else y::insert(x,ys)

u Prove correctness of these functions
• Use induction on lists (easy because that’s how ML 

let’s us write them)

Interfaces for Datatype Induction

u Partition operations into groups
• constructors: build elements of the data type
• operators: combine elements, but no “new” ones

• observers: produce values of other types

u Example: 
• sets with    empty : set    

insert : elt * set -> set
union : set * set -> set  

isMember : elt * set -> bool

• partition
construtors:   empty,  insert

operator:       union observer: isMember

Induction on constructors

u Operator: produces no new elements 
• Example: union for finite sets

Every set defined using union can be defined without union:
union(empty, s) = s 
union(insert(x,y), s) = insert(x, union(y,s))

u Prove property by induction
• Show for all elements produced by constructors

Set example: Prove P(empty) and P(y) => P(insert(x,y))

• This covers all elements of the type  

Example in course reader: equivalence of implementations

Example of set induction

u Assume map function
• map(f,empty) = empty

• map(f, insert(y,s)) = union(f(y), map(f,s))

u Function to find minimum element of list
• fun intersect(s,s’) =  if empty(s’) then s’ 

• else let f(x) = if member(x,s) then {x} else empty
• in map(f, s’)  end;

u Prove that this work:
• Use induction on s’:

– Correct if s’ = empty
– Correct if s’ = insert(y, s’’)

What’s the point of all this induction?

u Data abstraction hides details
u We can reason about programs that use 

abstract data types in an abstract way
• Use basic properties of data type

• Ignore way that data type is implemented

u This is not a course about induction
• We may ask some simple questions
• You will not have to derive any principle of induction
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Modules

u General construct for information hiding
u Two parts

• Interface: 
A set of names and their types

• Implementation: 
Declaration for every entry in the interface
Additional declarations that are hidden

u Examples:
• Modula modules, Ada packages, ML structures, ...

Modules and Data Abstraction

module Set
interface

type set
val empty : set
fun insert : elt * set -> set 
fun union : set * set -> set
fun isMember : elt * set -> bool

implementation
type set = elt list
val empty = nil
fun insert(x, elts) = ... 
fun union(…) = ... 
...

end Set

u Can define ADT
• Private type
• Public operations

u More general
• Several related types 

and operations

u Some languages
• Separate interface 

and implementation
• One interface can 

have multiple 
implementations

Generic Abstractions

u Parameterize modules by types, other modules
u Create general implementations 

• Can be instantiated in many ways

u Language examples:
• Ada generic packages, C++ templates, ML functors, …

• ML geometry modules in course reader
• C++ Standard Template Library (STL) provides 

extensive examples

C++ Templates

u Type parameterization mechanism
• template<class T> …  indicates type parameter T

• C++ has class templates and function templates
– Look at function case now

u Instantiation at link time
• Separate copy of template generated for each type
• Why code duplication?

– Size of local variables in activation record
– Link to operations on parameter type

Example

u Monomorphic swap function
void swap(int& x, int& y){

int tmp = x;  x = y;  y = tmp;
} 

u Polymorphic function template
template<class T>
void swap(T& x, T& y){

T tmp = x;  x = y;  y = tmp;
} 

u Call like ordinary function
float a, b;  …   ;  swap(a,b); …

Generic sort function

u Function requires < on parameter type
template <class T>
void sort( int count, T * A[count] ) {

for (int i=0; i<count-1; i++)
for (int j=I+1; j<count-1; j++)

if (A[j] < A[i]) swap(A[i],A[j]);
}

u How is function < found?
• Link sort function to calling program
• Determine actual T at link time

• If < is defined on T, then OK else error
– May require overloading resolution, etc.
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Compare to ML polymorphism

fun insert(less, x, nil) = [x]
|    insert(less, x, y::ys) = if less(x,y) then x::y::ys

else y::insert(less,x,ys)

fun sort(less, nil) = nil
|    sort(less, x::xs) = insert(less, x, sort(less,xs))

u Polymorphic sort function
• Pass operation as function 

• No instantiation since all lists are represented in the 
same way (using cons cells like Lisp).

u Uniform data representation
• Smaller code, can be less efficient, no complicated 

linking 

Standard Template Library for C++

u Many generic abstractions
• Polymorphic abstract types and operations

u Useful for many purposes
• Excellent example of generic programming

u Efficient running time (but not always space)
u Written in C++

• Uses template mechanism and overloading
• Does not rely on objects

Architect: Alex Stepanov

Main entities in STL

u Container: Collection of typed objects
• Examples: array, list, associative dictionary, ...

u Iterator:    Generalization of pointer or address
u Algorithm
u Adapter:    Convert from one form to another

• Example: produce iterator from updatable container

u Function object: Form of closure (“by hand”)
u Allocator: encapsulation of a memory pool

• Example: GC memory, ref count memory, ...

Example of STL approach

u Function to merge two sorted lists
• merge : range(s) × range(t) × comparison(u) 

→ range(u)
This is conceptually right, but not STL syntax.

u Basic concepts used
• range(s) - ordered “list” of elements of type s, given 

by pointers to first and last elements
• comparison(u) - boolean-valued function on type u

• subtyping - s and t must be subtypes of u

How merge appears in STL

u Ranges represented by iterators
• iterator is generalization of pointer

• supports ++  (move to next element)

u Comparison operator is object of class Compare
u Polymorphism expressed using template

template < class InputIterator1, class InputIterator2, 

class OutputIterator , class Compare >

OutputIterator merge(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, InputIterator1 last2,

OutputIterator result, Compare comp)

Comparing STL with other libraries

u C:

qsort( (void*)v, N, sizeof (v[0]), compare_int );

u C++, using raw C arrays:

int v[N];

sort( v, v+N );

u C++, using a vector class:

vector v(N);

sort( v.begin(), v.end() );
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Efficiency of STL 

u Running time for sort
N = 50000 N = 500000

C 1.4215 18.166
C++ (raw arrays) 0.2895 3.844

C++ (vector class) 0.2735 3.802

u Main point
• Generic abstractions can be convenient and efficient !
• But watch out for code size if using C++ templates…


