
1

Programming Languages

John Mitchell

CS 242

Goals

u Programming Language Culture
• A language is a “conceptual universe” (Perlis)

– Learn what is important about various languages
– Understand the ideas and programming methods

• Understand the languages you use (C, C++, Java)
by comparison with other languages

• Appreciate history, diversity of ideas in programming

• Be prepared for new problem-solving paradigms

u Critical thought
• Properties of language, not documentation

Transference of Lang. Concepts

u Parable
• I started programming in 1970’s

– Dominant language was Fortran; no recursive functions

• My algorithms and data structure instructor said:
– Recursion is a good idea even though inefficient

– You can use idea in Fortran by storing stack in array

• Today: recursive functions everywhere

u Moral
• World changes; useful to understand many ideas

u More recent example: garbage collection
• my 1994 PL lecture notes say “GC may come …

Xerox conservative collector”

Course Logistics

u Homework and Exams
• HW on Thursdays
• Midterm and Final: dates are set

• Honor Code, Collaboration Policy

u TA’s, Office hours, Email policy, …

u Section
• Monday 6-7 PM
• Optional discussion and review; no new material

– Not broadcast but notes will be available electronically

u Reading material
• My notes, occasional use of supplementary articles

Organization of this course

u Programming in the small
• Cover traditional Algol, Pascal constructs in ML

– Block structure, activation records
– Types and type systems, ...

• Lisp/Scheme concepts in ML too
– higher-order functions and closures, tail recursion
– exceptions, continuations

u Programming in the large
• Modularity and program structure

• Specific emphasis on OOP
– Smalltalk vs C++ vs Java
– Language design and implementation

Course Organization (cont’d)

u Concurrent and distributed programming
• General issues in concurrent programming

• Actor languages: an attempt at idealization
• Java threads

But what about C?
• Important, practical language

• But, most of you think C all the time
• We discuss other languages, you compare them to C

in your head as we go (and in homework)

2

First half of course

u Lisp (2 lectures)
u Foundations (2 lectures)

• Lambda Calculus
• Denotational Semantics
• Functional vs Imperative Programming

u Conventional prog. language concept (6 lectures)
• Language summary (1 lecture)
• Types and type inference (1 lecture)
• Block structure and memory management (2 lectures)

• Control constructs (2 lectures)

--------------------- Midterm Exam ------------------------

Second half of course

u Modularity and data abstraction (1 lecture)
u Object-oriented languages (6 lectures)

• Introduction to objects (1 lecture)
• Simula and Smalltalk (2 lectures)
• C++ (1.5 lectures)
• Java (1.5 lectures)

u Concurrent and distributed programming (1 lecture)
u Conclusions and review (1 lecture)

--------------------- Final Exam ------------------------

General suggestions

u Read ahead
• Some details are only in HW and reading

u There is something difficult about this course
• May be hard to understand homework questions

Thought questions: cannot run and debug

May sound like there is no right answer, but some answers are
better than others

• Many of you may be used to overlooking language
problems, so it takes a few weeks to see the issues

Foundations: Partial,Total Functions

u Value of an expression may be undefined
• Undefined operation, e.g., division by zero

– 3/0 has no value
– implementation may halt with error condition

• Nontermination
– f(x) = if x=0 then 1 else f(x-2)
– this is a partial function: not defined on all arguments
– cannot be detected at compile-time; this is halting problem

• These two cases are
– “Mathematically” equivalent
– Operationally different

Partial and Total Functions

u Total function f:A→B is a subset f ⊆ A×B with
• For every x∈A, there is some y∈B with 〈x,y〉 ∈ f (total)
• If 〈x,y〉 ∈ f and 〈x,z〉 ∈ f then y=z (single-valued)

u Partial function f:A→B is a subset f ⊆ A×B with
• If 〈x,y〉 ∈ f and 〈x,z〉 ∈ f then y=z (single-valued)

u Programs define partial functions for two reasons
• partial operations (like division)
• nontermination

f(x) = if x=0 then 1 else f(x-2)

Halting Problem

Entore Buggati: "I build
cars to go, not to stop."

Self-Portrait in the Green Buggati (1925)
Tamara DeLempicka

3

Computability

u Definition
A function f is computable if there is a program P that
computes f, i.e., for any input x, the computation
P(x) halts with output f(x)

u Terminology
Partial recursive functions
= partial functions (integers to integers)

that are computable

Halting function

u Decide whether program halts on input
• Given program P and input x to P,

Halt (P,x) =

u Clarifications
• Assume program P requires one string input x
• Write P(x) for output of P when run in input x
• Program P is string input to Halt

u Fact: There is no program for Halt

yes if P(x) halts
no otherwise

Unsolvability of the halting problem

u Suppose P solves variant of halting problem
• On input Q, assume

P(Q) =

u Build program D

• D(Q) =

u Does this make sense? What can D(D) do?
• If D(D) halts, then D(D) runs forever.
• If D(D) runs forever, then D(D) halts.
• CONTRADICTION: program P must not exist.

yes if Q(Q) halts
no otherwise

run forever if Q(Q) halts
halt if Q(Q) runs forever

Main points about computability

u Some functions are computable, some are not
• Halting problem

u Programming language implementation
• Can report error if program result is undefined due to

division by zero, other undefined basic operation

• Cannot report error if program will not terminate

