
1

Lisp

John Mitchell

CS 242

Lisp, 1960

u Look at Historical Lisp
• Perspective

– Some old ideas seem old
– Some old ideas seem new

• Example of elegant, minimalist language
• Not C: a chance to think differently
• Many general themes in language design

u Supplementary reading
• McCarthy, Recursive functions of symbolic

expressions and their computation by machine,
Communications of the ACM, Vol 3, No 4, 1960.

John McCarthy

u Pioneer in AI
• Formalize common-

sense reasoning

u Also
• Proposed timesharing
• Mathematical theory

• ….

u Lisp
stems from interest in
symbolic computation
(math, logic)

Lisp summary

u Many different dialects
• Lisp 1.5, Maclisp, …, Scheme, ...

• CommonLisp has many additional features
• This course: a fragment of Lisp 1.5, approximately

But ignore static/dynamic scope until later in course

u Simple syntax
(+ 1 2 3)
(+ (* 2 3) (* 4 5))

(f x y)

Easy to parse. (Looking ahead: programs as data)

Atoms and Pairs

u Atoms include numbers, indivisible “strings”
<atom> ::= <smbl> | <number>
<smbl> ::= <char> | <smbl><char> | <smbl><digit>

<num> ::= <digit> | <num><digit>

u Dotted pairs
• Write (A . B) for pair

• Symbolic expressions, called S-expressions:
<sexp> ::= <atom> | (<sexp> . <sexp>)

Basic Functions

u Functions on atoms and pairs:
cons car cdr eq atom

u Declarations and control:
cond lambda define eval quote

u Example
(lambda (x) (cond ((atom x) x) (T (cons ‘A x))))

function f(x) = if atom(x) then x else cons(“A”,x)

u Functions with side-effects
rplaca rplacd set setq

2

Evaluation of Expressions

u Read-eval-print loop
u Function call (function arg1 ... argn)

• evaluate each of the arguments

• pass list of argument values to function

u Special forms do not eval all arguments
• Example (cond (p1 e1) ... (pn en))

– proceed from left to right

– find the first pi with value true, eval this ei

• Example (quote A) does not evaluate A

Examples

(+ 4 5)
expression with value 9

(+ (+ 1 2) (+ 4 5))
evaluate 1+2, then 4+5, then 3+9 to get value

(cons (quote A) (quote B))
pair of atoms A and B

(quote (+ 1 2))
evaluates to list (+ 1 2)

'(+ 1 2)
same as (quote (+ 1 2))

McCarthy’s 1960 Paper

u Interesting paper with
• Good language ideas, succinct presentation

• Some feel for historical context
• Insight into language design process

u Important concepts
• Interest in symbolic computation influenced design
• Use of simple machine model

• Attention to theoretical considerations
Recursive function theory, Lambda calculus

• Various good ideas: Programs as data, garbage collection

Motivation for Lisp

u Advice Taker
• Process sentences as input, perform logical reasoning

u Symbolic integration, differentiation
• expression for function --> expression for integral

(integral ‘ (lambda (x) (times 3 (square x))))

u Motivating application part of good lang design
• Keep focus on most important goals
• Eliminate appealing but inessential ideas

Lisp symbolic computation, logic, experimental prog.
C Unix operating system
Simula simulation
PL/1 “kitchen sink”, not successful in long run

Execution Model (Abstract Machine)

u Language semantics must be defined
• Too concrete

– Programs not portable, tied to specific architecture
– Prohibit optimization (e.g., C eval order undefined in expn)

• Too abstract
– Cannot easily estimate running time, space

u Lisp: IBM 704, but only certain ideas …

• Address, decrement registers -> cells with two parts
• Garbage collection provides abstract view of memory

Abstract Machine

u Concept of abstract machine:
• Idealized computer, executes programs directly
• Capture programmer’s mental image of execution
• Not too concrete, not too abstract

u Examples
• Fortran

– Flat register machine; memory arranged as linear array
– No stacks, no recursion.

• Algol family
– Stack machine, contour model of scope, heap storage

• Smalltalk
– Objects, communicating by messages.

3

Theoretical Considerations

u “ … scheme for representing the partial
recursive functions of a certain class of symbolic
expressions.”

u Lisp uses
• Concept of computable (partial recursive) functions

– Want to express all computable functions

• Function expressions
– known from lambda calculus (developed A. Church)

– lambda calculus equivalent to Turing Machines, but provide
useful syntax and computation rules

Innovations in the Design of Lisp

u Expression-oriented
• function expressions

• conditional expressions
• recursive functions

u Abstract view of memory
• Cells instead of array of numbered locations
• Garbage collection

u Programs as data
u Higher-order functions

Parts of Speech

u Statement load 4094 r1
• Imperative command

• Alters the contents of previously-accessible memory

u Expression (x+5)/2
• Syntactic entity that is evaluated

• Has a value, need not change accessible memory
• If it does, has a side effect

u Declaration integer x
• Introduces new identifier

• May bind value to identifier, specify type, etc.

Function Expressions

u Example:
(lambda (parameters) (function_body))

u Syntax comes from lambda calculus:
λf. λx. f (f x)

(lambda (f) (lambda (x) (f (f x))))

Function expression defines a function but does
not give a name to it.

Conditional Expressions in Lisp

u Generalized if-then-else
(cond (p1 e1) (p2 e 2) … (p n en))

– Evaluate conditions p1 … pn left to right

– If pi is first condition true, then evaluate ei

– Value of ei is value of expression

Undefined if no pi true, or

p1 … pi false and pi+1 undefined, or
relevant pi true and ei undefined

Conditional statements in assembler
Conditional expressions apparently new in Lisp

Examples

(cond ((<2 1) 2) ((<1 2) 1))

has value 1

(cond ((<2 1) 2) ((<3 2) 3))

is undefined

(cond (diverge 1) (true 0))

is undefined, where diverge is undefined

(cond (true 0) (diverge 1))

has value 0

4

Strictness

u An operator or expression form is strict if it can
have a value only if all operands or
subexpressions have a value.

u Lisp cond is not strict, but addition is strict
• (cond (true 1) (diverge 0))

• (+ e1 e2)

Lisp Memory Model

u Cons cells
u Atoms and lists represented by cells

Address Decrement

Atom A

Atom B

Atom C

0

Sharing

(a) (b)

u Both structures could be printed as (A.B).(A.B)

u Which is result of evaluating
(cons (cons ‘A ‘B) (cons ‘A ‘B)) ?

A B A B A B

Garbage Collection

u Garbage:
At a given point in the execution of a program P, a
memory location m is garbage if no continued execution
of P from this point can access location m.

u Garbage Collection:
• Detect garbage during program execution

• GC invoked when more memory is needed
• Decision made by run-time system, not program

This is can be very convenient. Example: in building text-formatting
program, ~40% of programmer time on memory management.

Examples

(car (cons (e1) (e2)))
Cells created in evaluation of e2 may be garbage,

unless shared by e1 or other parts of program

((lambda (x) (car (cons (… x…) (... x ...)))
'(Big Mess))

The car and cdr of this cons cell may point to
overlapping structures.

Mark-and-Sweep Algorithm

u Assume tag bits associated with data

u Need list of heap locations named by program

u Algorithm:
• Set all tag bits to 0.

• Start from each location used directly in the program.
Follow all links, changing tag bit to 1

• Place all cells with tag = 0 on free list

5

Why Garbage Collection in Lisp?

u McCarthy's paper says that this is "more
convenient for the programmer than a system in
which he has to keep track of and erase
unwanted lists."

u Does this reasoning apply equally well to C?

u Is garbage collection "more appropriate" for Lisp
than C? Why?

Programs As Data

u Programs and data have same representation
u Eval function used to evaluate contents of list
u Example: substitute x for y in z and evaluate

(define substitute (lambda (x y z)

(cond ((atom z) (cond ((eq z y) x) (T z)))

(T (cons (substitute x y (car z))
(substitute x y (cdr z))))))

(define substitute-and-eval
(lambda (x y z) (eval (substitute x y z))))

Recursive Functions

u Want expression for function f such that
(f x) = (cond ((eq x 0) 0) (true (+ x (f (- x 1)))))

u Try
(lambda (x) (cond ((eq x 0) 0) (true (+ x (f (- x

1))))))

but f in function body is not defined.

u McCarthy's 1960 solution was operator “label”
(label f

(lambda (x) (cond ((eq x 0) 0) (true (+ x (f (- x
1)))))))

Higher-Order Functions

u Function that either
• takes a function as an argument

• returns a function as a result

u Example: function composition
(define compose

(lambda (f g) (lambda (x) (f (g x)))))

u Example: maplist
(define maplist (f x)

(cond ((null x) nil)

(true (cons (f (car x)) (maplist f (cdr
x))))))

Efficiency and Side-Effects

u Pure Lisp: no side effects
u Additional operations added for “efficiency”

(rplaca x y) replace car of cell x with y

(rplacd x y) replace cdr of cell x with y

u What does “efficiency” mean here?
• Is (rplaca x y) faster than (cons y (cdr x)) ?

• Is faster always better?

Summary: Contributions of Lisp

u Successful language
• symbolic computation, experimental programming

u Specific language ideas
• Expression-oriented: functions and recursion
• Lists as basic data structures
• Programs as data, with universal function eval
• Stack implementation of recursion via "public

pushdown list"
• Idea of garbage collection.

