
1

Concepts in Object-Oriented
Programming Languages

John Mitchell

CS 242

Outline of lecture

u Object-oriented design
u Primary object-oriented language concepts

• dynamic lookup

• encapsulation
• inheritance

• subtyping

u Program organization
• Work queue, geometry program, design patterns

u Comparison
• Objects as closures?

Objects

u An object consists of
• hidden data

instance variables, also called
member data

hidden functions also possible

• public operations
methods or member functions
can also have public variables

in some languages

u Object-oriented program:
• Send messages to objects

hidden data

method1msg1

.

methodnmsgn

What’s interesting about this?

u Universal encapsulation construct
• Data structure

• File system
• Database

• Window
• Integer

u Metaphor usefully ambiguous
• sequential or concurrent computation
• distributed, sync. or async. communication

Object-oriented programming

u Programming methodology
• organize concepts into objects and classes

• build extensible systems

u Language concepts
• encapsulate data and functions into objects

• subtyping allows extensions of data types
• inheritance allows reuse of implementation

Object-oriented Method [Booch]

u Four steps
• Identify the objects at a given level of abstraction

• Identify the semantics (intended behavior) of objects
• Identify the relationships among the objects

• Implement these objects

u Iterative process
• Implement objects by repeating these steps

u Not necessarily top-down
• “Level of abstraction” could start anywhere

2

This Method

u Based on associating objects with components
or concepts in a system

u Why iterative?
• An object is typically implemented using a number of

constituent objects
• Apply same methodology to subsystems, underlying

concepts

u Car object:
• Contains list of main parts (each an object)

– chassis, body, engine, drive train, wheel assemblies

• Method to compute weight
– sum the weights to compute total

u Part objects:
• Each may have list of main sub-parts

• Each must have method to compute weight

Example: Compute Weight of Car

Comparison to top-down design

u Similarity:
• A task is typically accomplished by completing a

number of finer-grained sub-tasks

u Differences:
• Focus of top-down design is on program structure
• OO methods are based on modeling ideas

• Combining functions and data into objects makes
data refinement more natural (I think)

Object-Orientation

3Programming methodology
• organize concepts into objects and classes

• build extensible systems

u Language concepts
• dynamic lookup

• encapsulation
• subtyping subtyping allows extensions of concepts

• inheritance allows reuse of implementation

Dynamic Lookup

u In object-oriented programming,
object à message (arguments)

code depends on object and message

u In conventional programming,
operation (operands)

meaning of operation is always the same

Example

u Add two numbers x à add (y)
different add if x is integer, complex

u Conventional programming add (x, y)
function add has fixed meaning

3

Language concepts

4“dynamic lookup”
• different code for different object

• integer “+” different from real “+”

u encapsulation
u subtyping
u inheritance

Encapsulation

u Builder of a concept has detailed view
u User of a concept has “abstract” view
u Encapsulation is the mechanism for separating

these two views

message

Object

Comparison

u Traditional approach to encapsulation is through
abstract data types

u Advantage
• Separate interface from implementation

u Disadvantage
• Not extensible in the way that oop is

We will look at ADT’s example to see what problem is

Abstract data types

abstype q
with

mk_Queue : unit -> q
is_empty : q -> bool
insert : q * elem -> q
remove : q -> elem

is …
in

program
end

Priority Q, similar to Queue

abstype pq
with mk_Queue : unit -> pq

is_empty : pq -> bool
insert : pq * elem -> pq

remove : pq -> elem
is …

in
program

end
But cannot intermix pq’s and q’s

Abstract Data Types

u Guarantee invariants of data structure
• only functions of the data type have access to the

internal representation of data

u Limited “reuse”
• Cannot apply queue code to pqueue, except by

explicit parameterization, even though signatures
identical

• Cannot form list of points, colored points

u Data abstraction is important part of OOP,
innovation is that it occurs in an extensible form

4

Language concepts

4“dynamic lookup”
• different code for different object

• integer “+” different from real “+”

4encapsulation
u subtyping
u inheritance

Subtyping and Inheritance

u Interface
• The external view of an object

u Subtyping
• Relation between interfaces

u Implementation
• The internal representation of an object

u Inheritance
• Relation between implementations

Object Interfaces

u Interface
• The messages understood by an object

u Example: point
• x-coord : returns x-coordinate of a point
• y-coord : returns y-coordinate of a point

• move : method for changing location

u The interface of an object is its type.

Subtyping

u If interface A contains all of interface B, then
A objects can also be used B objects.

u Colored_point interface contains Point
• Colored_point is a subtype of Point

Point
x-coord
y-coord
move

Colored_point
x-coord
y-coord
color
move
change_color

Inheritance

u Implementation mechanism
u New objects may be defined by reusing

implementations of other objects

Example

class Point
private

float x, y

public

point move (float dx, float dy);

class Colored_point
private

float x, y; color c

public

point move(float dx, float dy);

point change_color(color newc);

u Subtyping
• Colored points can be

used in place of points

• Property used by client
program

u Inheritance
• Colored points can be

implemented by resuing
point implementation

• Propetry used by
implementor of classes

5

Program Structure

u Group data and functions
u Class

• Defines behavior of all objects that are instances of
the class

u Subtyping
• Place similar data in related classes

u Inheritance
• Avoid reimplementing functions that are already

defined

Example: Geometry Library

u Define general concept shape
u Implement two shapes: circle, rectangle
u Functions on implemented shapes

center, move, rotate, print

u Anticipate additions to library

Shapes

u Interface of every shape must include
center, move, rotate, print

u Different kinds of shapes are implemented
differently
• Square: four points, representing corners
• Circle: center point and radius

Subtype hierarchy

Shape

Circle Rectangle

u General interface defined in the shape class
u Implementations defined in circle, rectangle
u Extend hierarchy with additional shapes

Code placed in classes

u Dynamic lookup
• circle à move(x,y) calls function c_move

u Conventional organization
• Place c_move, r_move in move function

r_printr_rotater_mover_centerRectangle

c_printc_rotatec_movec_centerCircle

printrotatemove center

Processing Loop

Remove shape from work queue
Perform action

Control loop does not know the
type of each shape

6

Design Patterns

u Classes and objects are useful organizing
concepts

u Culture of design patterns has developed
around object-oriented programming
• Shows value of OOP for program organization and

problem solving

What is a design pattern?

u General solution that has developed from
repeatedly addressing similar problems.

u Example: singleton
• Restrict programs so that only one instance of a class

can be created
• Singleton design pattern provides standard solution

u Not a class template
• Using most patterns will require some thought

• Pattern is meant to capture experience in useful form

Standard reference: Gamma, Helm, Johnson, Vlissides

OOP in Conventional Lang.

u Records provide “dynamic lookup”
u Scoping provides another form of encapsulation

Try object-oriented programming in ML.

Will it work? Let’s see what’s fundamental to OOP.

Dynamic Lookup (again)

receiver à operation (arguments)

code depends on receiver and operation

This is may be achieved in conventional languages
using record with function components

Stacks as closures

fun create_stack(x) =
let val store = ref [x] in

{push = fn (y) =>
store := y::(!store),

pop = fn () =>
case !store of

nil => raise Empty |

y::m => (store := m; y)
} end;

val stk = create_stack(1);

stk = {pop=fn,push=fn} : {pop:unit -> int, push:int -> unit}

Does this work ???

u Depends on what you mean by “work”
u Provides

• encapsulation of private data

• dynamic lookup

u But
• cannot substitute extended stacks for stacks
• only weak form of inheritance

– can add new operations to stack
– not mutually recursive with old operations

7

Varieties of OO languages

u class-based languages
• behavior of object determined by its class

u object-based
• objects defined directly

u multi-methods
• operation depends on all operands

This course: class-based languages.

History

u Simula 1960’s
• Object concept used in simulation

u Smalltalk 1970’s
• Object-oriented design, systems

u C++ 1980’s
• Adapted Simula ideas to C

u Java 1990’s
• Distributed programming, internet

Next lectures

u Simula and Smalltalk
u C++
u Java

