
1

Simula and Smalltalk

John Mitchell

CS 242

Simula 67

u First object-oriented language
u Designed for simulation

• Later recognized as general-purpose prog language

u Extension of Algol 60
u Standardized as Simula (no “67”) in 1977
u Inspiration to many later designers

• Smalltalk
• C++

• ...

Brief history

u Norwegian Computing Center
• Designers: Dahl, Myhrhaug, Nygaard

• Simula-1 in 1966 (strictly a simulation language)
• General language ideas

– Influenced by Hoare’s ideas on data types
– Added classes and prefixing (subtyping) to Algol 60

• Nygaard
– Operations Research specialist and political activist
– Wanted language to describe social and industrial systems
– Allow “ordinary people” to understand political (?) changes

• Dahl and Myhrhaug
– Maintained concern for general programming

Comparison to Algol 60

u Added features
• class concept

• reference variables (pointers to objects)
• pass-by-reference

• char, text, I/O
• coroutines

u Removed
• Changed default par passing from pass-by-name
• some var initialization requirements

• own (=C static) variables
• string type (in favor of text type)

Objects in Simula

u Class
• A procedure that returns a pointer to its activation record

u Object
• Activation record produced by call to a class

u Object access
• Access any local variable or procedures using dot

notation: object.

u Memory management
• Objects are garbage collected

– user destructors considered undesirable

Example: Circles and lines

u Problem
• Find the center and radius of the circle

passing through three distinct points, p,
q, and r

u Solution
• Draw intersecting circles Cp, Cq around

p,q and circles Cq’, Cr around q, r
(Picture assumes Cq = Cq’)

• Draw lines through circle intersections
• The intersection of the lines is the

center of the desired circle.

• Error if the points are colinear.

r

q

p

2

Approach in Simula

u Methodology
• Represent points, lines, and circles as objects.

• Equip objects with necessary operations.

u Operations
• Point

equality(anotherPoint) : boolean

distance(anotherPoint) : real (needed to construct circles)

• Line
parallelto(anotherLine) : boolean (to see if lines intersect)

meets(anotherLine) : REF(Point)

• Circle
intersects(anotherCircle) : REF(Line)

Simula Point Class

class Point(x,y); real x,y;
begin

boolean procedure equals(p); ref(Point) p;
if p =/= none then

equals := abs(x - p.x) + abs(y - p.y) < 0.00001
real procedure distance(p); ref(Point) p;

if p == none then error else
distance := sqrt((x - p.x)**2 + (y - p.y) ** 2);

end ***Point***

p :- new Point(1.0, 2.5);
q :- new Point(2.0,3.5);
if p.distance(q) > 2 then ...

formal p is pointer to Point

uninitialized ptr has
value none

pointer assignment

Representation of objects

Object is represented by activation record with access
link to find global variables according to static scoping

p access link
real x 1.0

real y 2.5

proc equals
proc distance

code for
equals

code for
distance

Simula line class

class Line(a,b,c); real a,b,c;
begin

boolean procedure parallelto(l); ref(Line) l;
if l =/= none then parallelto := ...

ref(Point) procedure meets(l); ref(Line) l;
begin real t;

if l =/= none and ~parallelto(l) then ...
end;

real d; d := sqrt(a**2 + b**2);
if d = 0.0 then error else

begin
d := 1/d;
a := a*d; b := b*d; c := c*d;

end;
end *** Line***

Procedures

Initialization:
“normalize” a,b,c

Local variables

line determined by
ax+by+c=0

Derived classes in Simula

u A class decl may be prefixed by a class name
class A

A class B
A class C

B class D

u An object of a “prefixed class” is the
concatenation of objects of each class in prefix
• d :- new D(…) A part

B part
D partd

Subtyping

u The type of an object is its class
u The type associated with a subclass is treated

as a subtype of the type assoc with superclass
u Example:

class A(…); ...
A class B(…); ...
ref (A) a :- new A(…)
ref (B) b :- new B(…)
a := b /* legal since B is subclass of A */
...
b := a /* also legal, but run-time test */

3

Main object-oriented features

u Classes
u Objects
u Inheritance (“class prefixing”)
u Subtyping
u Virtual methods

• A function can be redefined in subclass

u Inner
• Combines code of superclass with code of subclass

u Inspect/Qua
• run-time class/type tests

Features absent from Simula 67

u Encapsulation
• All data and functions accessible; no private, protected

u Self/Super mechanism of Smalltalk
• But has an expression this〈class〉 to refer to object

itself, regarded as object of type 〈class〉. Not clear how
powerful this is…

u Class variables
• But can have global variables

u Exceptions
• Not an OO feature anyway ...

Simula Summary

u Class
• ”procedure" that returns ptr to activation record

• initialization code always run as procedure body

u Objects: closure created by a class

u Encapsulation
• protected and private not recognized in 1967
• added later and used as basis for C++

u Subtyping: determined by class hierarchy

u Inheritance: provided by class prefixing

Smalltalk

u Major language that popularized objects
u Developed at Xerox PARC

• Smalltalk-76, Smalltalk -80 were important versions

u Object metaphor extended and refined
• Used some ideas from Simula, but very different lang

• Everything is an object, even a class
• All operations are “messages to objects”

• Very flexible and powerful language
– Similar to “everything is a list” in Lisp, but more so
– Example: object can detect that it has received a message it

does not understand, can try to figure out how to respond.

Motivating application: Dynabook

u Concept developed by Alan Kay (now Disney?)
u Small portable computer

• Revolutionary idea in early 1970’s
– At the time, a minicomputer was shared by 10 people,

stored in a machine room.

• What would you compute on an airplane?

u Influence on Smalltalk
• Language intended to be programming language and

operating system interface
• Intended for “non-programmer”

• Syntax presented by language-specific editor

Smalltalk language terminology

u Object Instance of some class

u Class Defines behavior of its objects

u Selector Name of a message

u Message Selector together with parameter values

u Method Code used by a class to respond to message

u Instance variable Data stored in object

u Subclass Class defined by giving incremental
modifications to some superclass

4

Example: Point class

u Class definition written in tabular form

class var pi

super class Object

class name Point

instance var x y

class messages and methods

〈…names and code for methods...〉

instance messages and methods

〈…names and code for methods...〉

Class messages and methods

Three class methods
newX:xvalue Y:yvalue | |

^ self new x: xvalue
y: yvalue

newOrigin | |

^ self new x: 0
y: 0

initialize | |
pi <- 3.14159

Explanation
- selector is mix-fix newX:Y:

e.g, Point newX:3 Y:2
- symbol ^ marks return value

- new is method in all classes,
inherited from Object

- | | marks scope for local decl

- initialize method sets pi, called
automatically

- <- is syntax for assignment

Instance messages and methods

Five instance methods
x: xcoord y: ycoord | |

x <- xcoord
y <- ycoord

moveDx: dx Dy: dy | |
x <- dx + x

y <- dy + y
x | | ^x

y | | ^y
draw | |

〈...code to draw point...〉

Explanation
set x,y coordinates,

e.g, pt x:5 y:3

move point by given amount

return hidden inst var x

return hidden inst var y
draw point on screen

Run-time representation of point

class

x 3
y 2

x

y

newX:Y:

...

move

Point object

Point class

Template

Method dictionary

to superclass Object

code

...

code

Detail: class method shown in
dictionary, but lookup procedure
distinguishes class and instance
methods

Inheritance

u Define colored points from points

class var

super class Point

class name ColoredPoint

instance var color

class messages and methods

instance messages and methods

newX:xv Y:yv C:cv 〈 … code … 〉

draw 〈 … code … 〉

color | | ^color

new instance
variable

new method

override Point
method

Run-time representation

2

3

x

y newX:Y:

draw
move

Point object Point class Template
Method dictionary

...

4
5

x

y newX:Y:C:
color

draw

ColorPoint object
ColorPoint class Template

Method dictionary

red

color

This is a schematic diagram meant to illustrate the main idea. Actual implementations may differ.

5

Encapsulation in Smalltalk

u Methods are public
u Instance variables are hidden

• Not visible to other objects
– pt x is not allowed unless x is a method

• But may be manipulated by subclass methods
– This limits ability to establish invariants
– Example:

• Superclass maintains sorted list of messages with some
selector, say insert

• Subclass may access this list directly, rearrange order

Object type

u Each object has interface
• Set of instance methods declared in class

• Example:
Point { x:y:, moveDx:Dy:, x, y, draw}
ColorPoint { x:y:, moveDx:Dy:, x, y, color, draw}

• This is a form of type
Names of methods, does not include type/protocol of arguments

u Object expression and type
• Send message to object

p draw p x:3 y:4
q color q moveDx: 5 Dy: blue

• Expression OK if message is in interface

Subtyping

u Relation between interfaces
• Suppose expression makes sense

p msg:pars -- OK if msg is in interface of p

• Replace p by q if interface of q contains interface of p

u Subtyping
• If interface is superset, then a subtype
• Example: ColorPoint subtype of Point

• Sometimes called “conformance”

Can extend to more detailed interfaces that include types of parameters

Subtyping and Inheritance

u Subtyping is implicit
• Not a part of the programming language

• Important aspect of how systems are built

u Inheritance is explicit
• Used to implement systems

• No forced relationship to subtyping

Collection Hierarchy

Collection

Set

Sorted collection

Indexed

Array

Dictionary

Subtyping

Inheritance

Updatable

isEmpty, size, includes: , …

add:
remove:

sortBlock:
…

at:Put:

at:

associationAt:

replaceFrom:to:with:

Smalltalk Flexibility

u Measure of PL expressiveness:
• Can constructs of the language be defined in the

language itself?
• Examples:

– Lisp cond: Lisp allows user-defined special forms

– ML datatype: sufficient to define polymorphic lists, equivalent
to built-in list type

– ML overloading: limitation, since not available to programmer
– C/C++: ???

u Smalltalk is expressive in this sense
• Many constructs that would be “primitives” other are

definable in Smalltalk
• Example: Booleans and Blocks

6

Smalltalk booleans and blocks

u Boolean value is object with ifTrue:ifFalse:
• Class boolean with subclasses True and False

• True ifTrue:B1 ifFalse:B2 executes B1
• False ifTrue:B1 ifFalse:B2 executes B2

u Example expression
i < j ifTrue: [i add 1] ifFalse: [j subtract 1]

• i < j is boolean expression, produces boolean object

• arg’s are blocks, objects with execute methods

u Since booleans and blocks are very common
• Optimization of boolean
• Special syntax for blocks

Self and Super

Factorial | |
self <= 1

ifTrue: [^1]
ifFalse: [^(self-1) factorial * self]

This method can be implemented in Integer, and works
even if SmallInt and LargeInt are represented differently.

C++ and Java type systems can’t really cope with this.

Integer

LargeIntSmallInt

Ingalls’ test

u Dan Ingalls: principal designer Smalltalk system
• Grace Murray Hopper award for Smalltalk and Bitmap

graphics work at Xerox PARC
• 1987 ACM Software Systems Award with Kay, Goldberg

u Proposed test for “object oriented”
• Can you define a new kind of integer, put your new

integers into rectangles (which are already part of the
window system), ask the system to blacken a rectangle,
and have everything work?

• Smalltalk passes, C++ fails this test

Smalltalk integer operations

u Integer expression
• x plus: 1 times: 3 plus: (y plus: 1) print

u Properties
• All operations are executed by sending messages
• If x is from some “new” kind of integer, expression

makes sense as long as x has plus, times, print
methods.

Actually, compiler does some optimization.

But will revert to this if x is not built-in integer.

Costs and benefits of “true OO”

u Why is property of Ingalls test useful?
• Everything is an object

• All objects are accessed only through interface
• Makes programs extensible

u What is implementation cost?
• Every integer operation involves method call

– Unless optimizing compiler can recognize many cases

• Is this worth it?
– One application where it seems useful ?
– One application where it seems too costly?
– Are there other issues? Security? (wait for Java final classes…)

Smalltalk Summary

u Class
• creates objects that share methods

• pointers to template, dictionary, parent class

u Objects: created by a class, contains instance variables

u Encapsulation
• methods public, instance variables hidden

u Subtyping: implicit, no static type system

u Inheritance: subclasses, self, super
Single inheritance in Smalltalk-76, Smalltalk-80

