
1

Midterm Review

John Mitchell

CS 242

Midterm

u Tues Nov 7, 7-9PM Gates B01,3 Closed book
u Class schedule

• Thurs Nov 2 – lecture topic not on midterm

• Monday Nov 6 – review session as usual
• Tues Nov 7 – class cancelled; no lecture

u Homework
• Homework due Thurs Nov 2 as usual

• No homework handed out Nov 2
• Sample exam – last year’s midterm

• Sample exam solutions? (Thurs or Monday?)

Topics

u Lisp, 1960
u Fundamentals

• lambda calculus

• denotational semantics
• functional prog

u ML and type systems
u Block structure and

activation records
u Exceptions and

continuations

u Modularity and
Abstractions

u OO concepts
• encapsulation

• dynamic lookup
• subtyping

• inheritance

u Simula and Smalltalk
u C++
u Java

Lisp Summary

u Successful language
• Symbolic computation, experimental programming

u Specific language ideas
• Expression-oriented: functions and recursion
• Lists as basic data structures
• Programs as data, with universal function eval
• Stack implementation of recursion via "public

pushdown list"
• Introduced garbage collection

Fundamentals

u Grammars, parsing
u Lambda calculus
u Denotational semantics
u Functional vs. Imperative Programming

• Why don’t we use functional programming?
• Is implicit parallelism a good idea?

• Is implicit anything a good idea?

ML

u Typed programming language
u Intended for interactive use
u Combination of Lisp and Algol-like features

• Expression-oriented
• Higher-order functions

• Garbage collection
• Abstract data types

• Module system
• Exceptions

u General purpose non-C-like, non-OO language

2

Types and Type Inference

u Type safety
• Can use compile-time or run-time typing

• Cannot have dangling pointers

u Type inference
• Compute types from the way symbols are used

• Know how algorithm works (for simple examples)
• Know what an ML polymorphic type means

- fun f(g,x) = g(g(x));
> val it = fn : (t → t)*t → t

• Polymorphism different from overloading

Block structure and storage mgmt

u Block-structured languages and stack storage
u In-line Blocks

• activation records

• storage for local, global variables

u First-order functions
• parameter passing
• tail recursion and iteration

u Higher-order functions
• deviations from stack discipline
• language expressiveness => implementation complexity

Summary of scope issues

u Block-structured lang uses stack of activ records
• Activation records contain parameters, local vars, …

• Also pointers to enclosing scope

u Several different parameter passing mechanisms
u Tail calls may be optimized
u Function parameters/results require closures

• Closure environment pointer used on function call
• Stack deallocation may fail if function returned from call

• Closures not needed if functions not in nested blocks

Control

u Structured Programming
• Go to considered harmful

u Exceptions
• “structured” jumps that may return a value
• dynamic scoping of exception handler

u Continuation
• Function representing the rest of the program

• Generalized form of tail recursion

