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Control in Sequential Languages 

John Mitchell

CS 242

Topics

u Structured Programming
• Go to considered harmful

u Control of evaluation order (force and delay)
• Skip this. You can read sketch in notes.

u Exceptions
• “structured” jumps that may return a value
• dynamic scoping of exception handler

u Continuations
• Function representing the rest of the program
• Generalized form of tail recursion

Fortran Control Structure

10 IF (X .GT. 0.000001) GO TO 20
11 X = -X

IF (X .LT. 0.000001) GO TO 50
20 IF (X*Y .LT. 0.00001) GO TO 30

X = X-Y-Y
30  X = X+Y

...
50 CONTINUE

X = A
Y = B-A

GO TO 11
… 

Historical Debate

u Dijkstra, Go To Statement Considered Harmful
• Letter to Editor, C ACM, March 1968

• Now on web: http://www.acm.org/classics/oct95/

u Knuth, Structured Prog. with go to Statements
• You can use goto, but do so in structured way …

u Continued discussion
• Welch, GOTO (Considered Harmful)n, n is Odd

u General questions
• Do syntactic rules force good programming style?
• Can they help?

Advance in Computer Science

u Standard constructs that structure jumps
if … then … else … end

while … do … end
for … { … }

case … 

u Modern style
• Group code in logical blocks 

• Avoid explicit jumps except for function return
• Cannot jump into middle of block or function body

Exceptions: Structured Exit 

u Terminate part of computation 
• Jump out of construct

• Pass data as part of jump
• Return to most recent site set up to handle exception

• Unnecessary activation records may be deallocated
– May need to free heap space, other resources

u Two main language constructs
• Declaration to establish exception handler

• Statement or expression to raise or throw exception 

Often used for unusual or exceptional condition, but not necessarily.
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ML Example

exception Determinant;  (* declare exception name *)
fun invert (M) =            (* function to invert matrix *)

…
if …

then raise Determinant    (* exit if Det=0 *)
else …

end;
...

invert (myMatrix) handle Determinant => … ;

Value for expression if determinant of myMatrix is 0

C++ Example

Matrix invert(Matrix m) { 
if … throw Determinant;

…
};

try { … invert(myMatrix); …

}
catch (Determinant) { …

// recover from error
}

C++ vs ML Exceptions

u C++ exceptions
• Can throw any type

• Stroustrup: “I prefer to define types with no other purpose 
than exception handling. This minimizes confusion about their 
purpose. In particular, I never use a built-in type, such as int, as 
an exception.”       -- The C++ Programming Language, 3rd ed.

u ML exceptions
• Exceptions are a different kind of entity than types.

• Declare exceptions before use

Similar, but ML requires the recommended C++ style. 

ML Exceptions

u Declaration
exception 〈name〉 of 〈type〉

gives name of exception and type of data passed when raised

u Raise 
raise 〈name〉 〈parameters〉

expression form to raise and exception and pass data

u Handler
〈exp1〉 handle 〈pattern〉 => 〈exp2〉

evaluate first expression
if exception that matches pattern is raised, 

then evaluate second expression instead
General form allows multiple patterns.

Which handler is used?

exception Ovflw;
fun reciprocal(x) = 

if x<min  then raise Ovflw  else 1/x;

(reciprocal(x) handle Ovflw=>0)  /  (reciprocal(y) handle Ovflw=>1);

u Dynamic scoping of handlers
• First call handles exception one way
• Second call handles exception another

• General dynamic scoping rule
Jump to most recently established handler on run-time stack

u Dynamic scoping is not an accident
• User knows how to handler error

• Author of library function does not 

Exception for Error Condition

- datatype ‘a tree = LF of  ‘a | ND of  (‘a tree)*(‘a tree)
- exception No_Subtree;

- fun lsub (LF x) = raise No_Subtree
|    lsub (ND(x,y)) = x;

> val lsub = fn : ‘a tree -> ‘a tree

• This function raises an exception when there is no 
reasonable value to return

• We’ll look at typing later.
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Exception for Efficiency

u Function to multiply values of tree leaves
fun prod(LF x) = x

|    prod(ND(x,y)) = prod(x) * prod(y);

u Optimize using exception
fun prod(tree) = 

let exception Zero 
fun p(LF x) = if x=0 then (raise Zero) else x  

| p(ND(x,y)) = p(x) * p(y)
in

p(tree) handle Zero=>0
end;

Dynamic Scope of Handler

exception X;
(let fun f(y) = raise X

and g(h) = h(1) handle X => 2
in

g(f) handle X => 4
end) handle X => 6;

scope

handler

Which handler is used?

Dynamic Scope of Handler

exception X;
(let fun f(y) = raise X

and g(h) = h(1) handle X => 2
in

g(f) handle X => 4
end) handle X => 6;

handler X 6

formal h
handler X 2

access link 

formal y 1
access link 

g(f)

f(1)

fun f 
access link 

access link 
fun g 

Dynamic scope: 
find first X handler, 
going up the 
dynamic call chain 
leading to raise X.

handler X 4
access link 

Compare to static scope of variables

exception X;

(let fun f(y) = raise X
and g(h) = h(1) 

handle X => 2
in

g(f) handle X => 4
end) handle X => 6;

val x=6;

(let fun f(y) = x
and g(h) = let val x=2 in

h(1) 
in

let val x=4 in g(f) 
end);

Static Scope of Declarations

val x=6;
(let fun f(y) = x

and g(h) = let val x=2 in
h(1) 

in
let val x=4 in g(f) 

end);

val x 6

formal h
val x 2

access link 

formal y 1
access link 

g(f)

f(1)

fun f 
access link 

access link 
fun g 

Static scope: find 
first x, following 
access links from 
the reference to X.

val x 4
access link 

Typing of Exceptions

u Typing of raise 〈exn〉
• Recall definition of typing

– Expression e has type t if normal termination of e 
produces value of type t

• Raising exception is not normal termination
– Example:  1 + raise X

u Typing of handle 〈exn〉 => 〈value〉
• Converts exception to normal termination
• Need type agreement

• Examples
– 1 + ((raise X) handle X => e)   Type of emust be int 
– 1 + (e1 handle X => e2)           Type of e1, e2 must be int
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Exceptions and Resource Allocation

exception X;
(let 

val x = ref [1,2,3]
in 

let 
val y = ref [4,5,6]

in 
… raise X

end
end);  handle X => ...

u Resources may be 
allocated between 
handler and raise

u May be “garbage” 
after exception

u Examples
• Memory
• Lock on database

• Threads
• …

General problem: no obvious solution

Continuations

u General technique using higher-order functions
• Allows “jump” or “exit” by function call

u Used in compiler optimization
• Make control flow of program explicit

u General transformation to “tail recursive form”
u Idea:

• The continuation of an expression is “the remaining 
work to be done after evaluating the expression”

• Continuation of e is a function applied to e

Example

u Expression 
• 2*x + 3*y + 1/x + 2/y

u What is continuation of 1/x?
• Remaining computation after division

let val before = 2*x + 3*y 
fun continue(d) = before + d + 2/y

in
continue (1/x)

end

Example: Tail Recursive Factorial

u Standard recursive function
fact(n) = if n=0 then 1 else n*fact(n-1)

u Tail recursive
f(n,k) = if n=0 then k else f(n-1, n*k)
fact(n) = f(n,1)

u How could we derive this?
• Transform to continuation-passing form

• Optimize continuation functions to single integer 

Continuation view of factorial

fact(n) = if n=0 then 1 else n*fact(n-1)

fact(9)

fact(8)

fact(7)

• This invocation multiplies by 9 
and returns

• Continuation of fact(8) is λx. 9*x 

• Multiplies by 8 and returns
• Continuation of fact(7) is 

λy. (λx. 9*x) (8*y) 

• Multiplies by 7 and returns
• Continuation of fact(6) is 

λz.  (λy. (λx. 9*x) (8*y)) (7*z)

return
n 9

...

return
n 8

...

return
n 7

...

Derivation of tail recursive form

u Standard function
fact(n) = if n=0 then 1 else n*fact(n-1)

u Continuation form
fact(n, k) = if n=0 then k(1) 

else fact(n-1, λx.k (n*x) )

fact(n, λx.x)  computes n!

u Example computation

fact(3,λx.x)  = fact(2, λy.((λx.x) (3*y)))

= fact(1, λx.((λy.3*y)(2*x)))

= λx.((λy.3*y)(2*x)) 1 = 6

continuation
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Tail Recursive Form

u Optimization of continuations
fact(n,a) = if n=0 then a

else fact(n-1, n*a )

Each continuation is effectively λx.(a*x) for some a

u Example computation
fact(3,1)  = fact(2, 3)        was  fact(2, λy.3*y)

= fact(1, 6)        was  fact(1, λx.6*x)

= 6

Other uses for continuations

u Explicit control
• Normal termination -- call continuation

• Abnormal termination -- do something else

u Compilation techniques
• Call to continuation is functional form of “go to”

• Continuation-passing style makes control flow explicit

MacQueen: “Callcc is the closest thing to a 

‘come-from’ statement I’ve ever seen.”

Capturing Current Continuation

u Language feature        (use  open SMLofNJ; on Leland)

• callcc : call a function with current continuation

• Can be used to abort subcomputation and go on

u Examples
• callcc (fn k => 1);

> val it = 1 : int
– Current continuation is “fn x => print x”
– Continuation is not used in expression.

• 1 + callcc(fn k => 5 + throw k 2);
> val it = 3 : int

– Current continuation is “fn x => print 1+x”

– Subexpression throw k 2 applies continuation to 2

More with callcc

u Example
1 + callcc(fn k1=>   …

callcc(fn k2 => …
if … then (throw k1 0)

else (throw k2 “stuck”)
))

u Intuition
• Callcc lets you mark a point in program that you can return to

• Throw lets you jump to that point and continue from there

Continuations in compilation

u SML continuation-based compiler [Appel, Steele]
1) Lexical analysis, parsing, type checking

2) Translation to λ -calculus form
3) Conversion to continuation-passing style (CPS)

4) Optimization of CPS
5) Closure conversion – eliminate free variables

6) Elimination of nested scopes
7) Register spilling – no expression with >n free vars

8) Generation of target assembly language program
9) Assembly to produce target-machine program

Summary

u Structured Programming
• Go to considered harmful

u Exceptions
• “structured” jumps that may return a value
• dynamic scoping of exception handler

u Continuations
• Function representing the rest of the program

• Generalized form of tail recursion
• Used in Lisp, ML compilation


