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Fundamentals

John Mitchell

CS 242

Syntax and Semantics of Programs

u Syntax
• The symbols used to write a program

u Semantics 
• The actions that occur when a program is executed

u Programming language implementation
• Syntax → Semantics
• Transform program syntax into machine instructions 

that can be executed to cause the correct sequence 
of actions to occur

Typical Compiler

See summary in course reader, compiler books

Source 
Program

Lexical Analyzer

Syntax Analyzer

Semantic Analyzer

Intermediate Code 
Generator

Code Optimizer

Code Generator Target 
Program

Brief look at syntax

u Grammar
e  ::=  n  |  e+e  |  e−e  

n  ::=  d  | nd
d  ::=  0  |  1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  9

u Expressions in language
e → e−e → e−e+e → n−n+n → nd−d+d → dd−d+d

→ … → 27 − 4 + 3

Grammar defines a language
Expressions in language derived by sequence of productions

Most of you are probably familiar with this already

Parse tree

u Derivation represented by tree
e → e−e → e−e+e → n−n+n → nd−d+d → dd−d+d

→ … → 27 − 4 + 3
e

e −

e +

e

e27

4 3

Tree shows parenthesization of expression

Parsing

u Given expression find tree
u Ambiguity

• Expression   27 − 4 + 3   can be parsed two ways

• Problem: 27 − (4 + 3)   ≠ (27 − 4) + 3 

u Ways to resolve ambiguity
• Precedence

– Group * before +  
– Parse  3*4 + 2  as (3*4) + 2

• Associativity
– Parenthesize operators of equal precedence to left (or right)
– Parse  3 − 4 + 5 as (3 − 4) + 5

See reader for more info



2

Theoretical Foundations

u Many foundational systems
• Computability Theory

• Program Logics
• Lambda Calculus

• Denotational Semantics
• Operational Semantics

• Type Theory 

u Consider two of these methods
• Lambda calculus (syntax, operational semantics)

• Denotational semantics

Plan for next two lectures

u Lambda calculus
u Denotational semantics
u Functional vs imperative programming

Lambda Calculus

u Formal system with three parts
• Notation for function expressions
• Proof system for equations
• Calculation rules called reduction

u Additional topics in lambda calculus
• Mathematical semantics (=model theory)
• Type systems

We will look at syntax, equations and reduction

There is more detail in reader than we will cover in class

History

u Original intention
• Formal theory of substitution (for FOL, etc.)

u More successful as formalism for computable 
functions
• Substitution  -->  symbolic computation
• Church/Turing thesis

u Influenced design of Lisp, ML, other languages
u Important part of CS history and theory

Why study this now?

u Basic syntactic notions
• Free and bound variables

• Functions
• Declarations

u Calculation rule
• Symbolic evaluation useful for discussing programs
• Used in optimization (in-lining), macro expansion

• Illustrates some ideas about scope of binding

Expressions and Functions

u Expressions
x + y x + 2*y + z

u Functions
λx. (x+y)         λz. (x + 2*y + z)

u Application
(λx. (x+y)) 3                =  3 + y
(λz. (x + 2*y + z)) 5     =  x + 2*y + 5

Parsing:  λx. f (f x) = λx. ( f (f (x)) )
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Higher-Order Functions

u Given function f, return function f ° f
λf.  λx. f (f x)

u How does this work?

(λf.  λx. f (f x))  (λy. y+1)

=  λx. (λy. y+1) ((λy. y+1)  x)

=  λx. (λy. y+1) (x+1)

=  λx. (x+1)+1

Same result if step 2 is altered.

Declarations as “Syntactic Sugar”

function f(x) 
return x+2

end;
f(5);

block body declared function

(λf.  f(5))  (λx. x+2)

let x = e1 in e2 =   (λx.  e2)  e1

Free and Bound Variables

u Bound variable is “placeholder”
• Variable x is bound in λx. (x+y) 

• Function λx. (x+y) is same function as λz. (z+y) 

u Compare
∫ x+y dx  =  ∫ z+y dz       ∀x  P(x) = ∀z  P(z)  

u Name of free (=unbound) variable does matter
• Variable y is free in λx. (x+y) 

• Function λx. (x+y) is not same as  λx. (x+z)

u Occurrences
• y is free and bound in   λx. ((λy. y+2) x) + y

Reduction

u Basic computation rule is β-reduction
(λx. e1) e2 → [e2/x]e1

where substitution involves renaming as needed 

(next slide)

u Reduction:
• Apply basic computation rule to any subexpression

• Repeat 

u Confluence:
• Final result (if there is one) is uniquely determined

Rename Bound Variables

u Function application
(λf.  λx. f (f x))  (λy. y+x)

apply twice add x to argument

u Substitute “blindly”
λx. [(λy. y+x) ((λy. y+x) x)] =  λx. x+x+x  

u Rename bound variables
(λf.  λz. f (f z))  (λy. y+x)

=  λz. [(λy. y+x) ((λy. y+x) z))] =  λz. z+x+x  

Easy rule: always rename variables to be distinct

1066 and all that

u 1066 And All That, Sellar & Yeatman, 1930
1066 is a lovely parody of English history books, 
"Comprising all the parts you can remember including 
one hundred and three good things, five bad kings 
and two genuine dates.”
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Main Points about Lambda Calculus

u λ captures “essence” of variable binding
• Function parameters

• Declarations
• Bound variables can be renamed

u Succinct function expressions
u Simple symbolic evaluator via substitution
u Can be extended with

• Types

• Various functions
• Stores and side-effects
( But we didn’t cover these )

Denotational Semantics

u Describe meaning of programs by specifying the 
mathematical 
• Function

• Function on functions
• Value, such as natural numbers or strings

defined by each construct

Original Motivation for Topic

u Precision
• Use mathematics instead of English

u Avoid details of specific machines
• Aim to capture “pure meaning” apart from 

implementation details

u Basis for program analysis
• Justify program proof methods

– Soundness of type system, control flow analysis

• Proof of compiler correctness
• Language comparisons

Why study this in CS 242 ?

u Look at programs in a different way
u Program analysis

• Initialize before use, …

u Introduce historical debate: functional versus 
imperative programming
• Program expressiveness: what does this mean?
• Theory versus practice: we don’t have a good 

theoretical understanding of programming language 
“usefulness”

Basic Principle of Denotational Sem.

u Compositionality
• The meaning of a compound program must be 

defined from the meanings of its parts (not the 
syntax of its parts).

u Examples
• P; Q

composition of two functions,  state → state

• letrec f(x) = e1 in e2

meaning of e2 where f denotes function ...

Trivial Example: Binary Numbers

u Syntax
b ::=   0 | 1

n ::=   d | nb

e ::=   n | e+e

u Semantics        value function E : exp -> numbers
E [[ 0 ]] = 0 E [[ 1 ]] = 1
E [[ nb ]] = 2*E[[ n ]] + E[[ b ]]

E [[ e1+e2 ]] = E[[ e1 ]] + E[[ e2 ]]

Obvious, but different from compiler evaluation using registers, etc. 
This is a simple machine-independent characterization ...
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Second Example: Expressions  w/vars

u Syntax
d ::=   0 | 1 | 2 | … | 9

n ::=   d | nd

e ::=   x | n | e + e

u Semantics        value function E : exp -> numbers
state  s : vars -> numbers

E [[ x ]] s = s(x)

E [[ 0 ]] s = 0 E [[ 1 ]] s = 1 …

E [[ nd ]] s = 10*E[[ n ]] s + E[[ d ]] s

E [[ e1 + e2 ]] s = E[[ e1 ]] s + E[[ e2 ]] s

Semantics of Imperative Programs

u Syntax
P ::=  x:=e  |  if B then P else P  |  P;P  |  while B do P

u Semantics
• C : Programs  → (State → State)
• State = Variables → Values

would be locations → values if we wanted to model aliasing

Every imperative program can be translated into a functional 
program in a relatively simple, syntax-directed way.

Semantics of Assignment

C[[  x:= e  ]] 
is a function states → states

C[[  x:= e  ]] s   =   s’
where s’ : variables → values is identical to s except

s’(x) = E [[ e ]] s   gives the value of e in state s

Semantics of Conditional

C[[  if B then P else Q  ]] 
is a function states → states

C[[ if B then P else Q ]] s   =   
C[[ P ]] s if E [[ B ]] s   is true

C[[ Q ]] s if E [[ B ]] s   is false

Simplification: assume B cannot diverge or have side effects

Semantics of Iteration

C[[  while B do P  ]] 
is a function states → states

C[[  while B do P  ]] = the function f  such that

f(s) = s if E [[ B ]] s   is false

f(s) = f( C[[ P ]](s) ) if  E [[ B ]] s   is true

Mathematics of denotational semantics: prove that there 
is such a function and that it is uniquely determined. 
“Beyond scope of this course.”

Perspective

u Denotational semantics 
• Assign mathematical meanings to programs in a 

structured, principled way
• Imperative programs define mathematical functions

• Can write semantics using lambda calculus, extended 
with operators like  

modify : (state × var × value) → state

u Impact
• Influential theory
• Indirect applications via 

abstract interpretation, type theory, … 
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Functional vs Imperative Programs

u Denotational semantics shows
• Every imperative program can be written as a 

functional program, using a data structure to 
represent machine states

u This is a theoretical result
• I guess “theoretical” means “it’s really true”  (?)

u What are the practical implications?
• Can we use functional programming languages for 

practical applications?
Compilers, graphical user interfaces, network routers, …. 

What is a functional language ?

u “No side effects”
u OK, we have side effects, but we also have 

higher-order functions…

We will use pure functional language to mean 
“a language with functions, but without side effects

or other imperative features”

No-side-effects language test

Within the scope of specific declarations of x1, x2, …, xn, 
all occurrences of an expression e containing only 
variables x1, x2, …, xn, must have the same value.

u Example
begin

integer x=3; integer y=4;
5*(x+y)-3    

…              // no new declaration of x or y //
4*(x+y)+1

end

?

Example languages

u Pure Lisp
atom, eq, car, cdr, cons, lambda, define

u Impure Lisp: rplaca, rplacd

lambda (x)  (cons
(car x)

(…  (rplaca (… x …) ...) ... (car x) … )
))
Cannot just evaluate (car x) once

u Common procedural languages are not functional
• Pascal, C, Ada, C++, Java, Modula, … 

Example functional programs in a couple of slides

Backus’ Turing Award

u John Backus was designer of Fortran, BNF, etc.
u Turing Award in  1977
u Turing Award Lecture

• Functional prog better than imperative programming
• Easier to reason about functional programs

• More efficient due to parallelism
• Algebraic laws 

Reason about programs
Optimizing compilers

Reasoning about programs

u To prove a program correct, 
• must consider everything a program depends on

u In functional programs,
• dependence on any data structure is explicit

u Therefore, 
• easier to reason about functional programs.

u Do you believe this?
• This thesis must be tested in practice.

• Many who prove properties of programs believe this.
• Not many people really prove their code correct.
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Functional programming: Example 1

u Devise a representation for stacks and 
implementations for functions

push (elt, stk) returns stack with elt on top of stk

top (stk) returns top element of stk
pop (stk) returns stk with top element removed

u Solution
• Represent stack by a list

push = cons

top = car
pop = cdr

This ignores test for empty stack, but can be added ...

Functional programming: Example 2

u Devise a representation for queues and 
implementations for functions

enq (elt, q) returns queue with elt at back of q

front (q) returns front element of q
deq (q) returns q with front element removed

u Solution
• Can do this with explicit point manipulation in C
• Can we do this efficiently in a functional language?

Functional implementation

u Represent queue by two stacks
• Input onto one, Output from the other

• Flip stack when empty; constant amortized time.

u Simple algorithm
• Can be proved correct relatively easily

Enqueue

Dequeue

Disadvantages of Functional Prog

Functional programs often less efficient. Why?

Change 3rd element of list x to y
(cons (car x) (cons (cadr x) (cons y (cdddr x))))

– Build new cells for first three elements of list

(rplaca (cddr x) y)
– Change contents of third cell of list directly

However, many optimizations are possible

A B C D

Von Neumann bottleneck

u Von Neumann
• Mathematician responsible for idea of stored program

u Von Neumann Bottleneck
• Backus’ term for limitation in CPU-memory transfer

u Related to sequentiality of imperative languages
• Code must be executed in specific order

function f(x)   { if x<y then y:=x else x:=y };
g( f(i), f(j) );

Eliminating VN Bottleneck

u No side effects
• Evaluate subexpressions independently

• Example
– function  f(x)   { if x<y then 1 else 2 };
– g(f(i), f(j), f(k), … );

u Does this work in practice? Good idea but ...
• Too much parallelism
• Little help in allocation of processors to processes

• ... 
• David Shaw promised to build the non-Von ...

u Effective, easy concurrency is a hard problem


