
1

Java

John Mitchell

CS 242

Outline

u History and design goals
u Basic design decisions

• simplicity
• portability and mobility
• safety

u Encapsulation
u Inheritance

u Subtyping
• interfaces; arrays

u Java virtual machine
• loader and initialization
• verifier and security

• bytecode interpreter

u Method lookup
• four different bytecodes

u Exceptions
• try/finally
• exception class hierarchy

u Limitations and problems
• Lack of polymorphism

History

u James Gosling and others at Sun, 1990 - 95
u Oak language for “set-top box”

• small networked device with television display
– graphics

– execution of simple programs
– communication between local program and remote site
– no “expert programmer” to deal with crash, etc.

u Internet application
• simple language for writing programs that can be

transmitted over network

Design Goals

u Simplicity and familiarity
• Should appeal to your average programmer

• Fewer details and choices than C++

u Portability
• Internet-wide distribution: PC, Unix, Mac

u Safety
• Programmer may be malicious

u Reliability
u Efficiency

• Important but secondary

Gates Saw Java as Real Threat

Publicly, Microsoft chief Bill Gates was
nearly dismissive when he talked in 1996
about Sun Microsystems' Java
programming language. But in internal
company discussions, he wrote to staff
members that Java and the threat the
cross-platform technology posed to his
company's Windows operating systems
"scares the hell out of me."

Wired News Report
8:09 a.m. 22.Oct.98.PDT
(material from ‘98 trial)

General design decisions

u Simplicity
• Almost everything is an object

• All objects on heap, accessed through pointers
• No functions, no multiple inheritance, no go to, no

operator overloading, no automatic coercions

u Portability and network transfer
• Bytecode interpreter on many platforms

u Safety
• Typed source and bytecode language

• Run-time type and bounds checks
• Garbage collection

2

Java System

u The Java programming language
u Compiler and run-time system

• Programmer compiles code

• Compiled code transmitted on network
• Receiver executes on interpreter (JVM)

• Safety checks made before/during execution

u Library, including graphics, security, etc.

Possible Java Equation (MM)

u Java = Modula-3 + Standardized P-Code +
C Syntax - Generics + Big Ol' Library

u Modula-3
• imperative, object-oriented language
• garbage-collection

• exceptions
• built-in thread support

• object-assignment as pointer-assignment
• BUT: unsafe modules with user memory management

Language Terminology

u Class, object as in other languages
u Field - member data
u Method - member function
u Static members - class fields and methods
u this - self
u Native method - method written in another

language, typically C
u Package - set of classes in shared namespace

Sample Program

public class HelloWorld {
public static void main(String[] args) {

System.out.println{“Hello World!”);
}

}

Static method = class method
Function can be called without creating object of the class

Point Class

class Point {

private int x;
protected void setX (int y) {x = y;}

public int getX() {return x;}
Point(int xval) {x = xval ;} // constructor

};

• Visibility similar to C++, but not exactly (next slide)

Encapsulation and namespaces

u Every field, method
belongs to a class

u Every class is part of
some package
• Can be unnamed default

package
• File declares which

package code belongs to

package

class
field

method

package

class
field

method

3

Visibility and access

u Four visibility distinctions
• public, private, protected, package

u Method can refer to
• private members of class it belongs to
• non-private members of all classes in same package

• protected members of superclasses (in diff package)
• public members of classes in visible packages

Visibility determined by files system, etc. (outside language)

u Qualified names (or use import)

• java.lang.String.substring()

package class method

Inheritance

u Similar to Smalltalk, C++
u Single inheritance only (but see interfaces)
u Some additional features

• Conventions regarding super in constructor and
finalize methods

• Final classes and methods

Example subclass

class ColorPoint extends Point {

// Additional fields and methods here:
private Color c;

protected void setC (Color d) {c = d;}
public Color getC() {return c;}

// Define constructor

ColorPoint(int xval, Color cval) {
super(xval); // call Point constructor

c = cval; } // initialize ColorPoint field
};

Constructors and Super

u Java guarantees constructor call for each object
u This must be preserved by inheritance

• Subclass constructor must call super constructor
– If first statement is not call to super, then call super()

inserted automatically by compiler
– If superclass does not have constructor with no args, then

this causes compiler error (yuck)

– Exception to rule: if one constructor invokes another, then it
is responsibility of second constructor to call super, e.g.,

ColorPoint() { ColorPoint(0,blue);}
is compiled without inserting call to super

u Different conventions for finalize and super
Compiler does not force call to super finalize

Garbage Collection and Finalize

u Objects are garbage collected
• No explicit free

• Avoid dangling pointers, resulting type errors

u Problem
• What if object has opened file or holds lock?

u Solution
• finalize methods, called by the garbage collector

– Before space is reclaimed, or when virtual machine exits
– Space overflow is not really the right condition to trigger

finalization when an object holds a lock...)

• Important convention: call super.finalize

Final classes and methods

u Restrict inheritance
• Final classes and methods cannot be redefined

u Example
java.lang.System

u Reasons for this feature
• Important for security

– Programmer controls behavior of all subclasses
– Critical because subclasses produce subtypes

• Compare to C++ virtual/non-virtual
– Method is “virtual” until it becomes final

4

Subtyping and Interfaces

u Subtyping similar to C++
• Statically typed language

• Subclass produces subtype
• Single inheritance => subclasses form tree

u Interfaces
• Completely abstract classes

– no implementation
– Java also has abstract classes (without full impl)

• Multiple subtyping
– Interface can have multiple subtypes

Example

interface Shape {
public float center();
public void rotate(float degrees);

}
interface Drawable {

public void setColor (Color c);
public void draw();

}
class Circle implements Shape, Drawable {

// does not inherit any implementation
// but must define Shape, Drawable methods

}

Properties of interfaces

u Flexibility
• Allows subtype graph instead of tree

• Avoids problems with multiple inheritance of
implementations (remember C++ “diamond”)

u Cost
• Offset in method lookup table not known at compile

• Different bytecodes for method lookup
– one when class is known
– one when only interface is known

• search for location of method
• cache for use next time this call is made (from this line)

More about subtyping

u Arrays assumed covariant (see next slide)

• Run-time tests used to avoid type errors

• Some like this feature (Simula/Beta), some do not ...

u Type conversion

• Casts checked at run-time, may raise exception

u No templates (yet)

• List class is list of objects

• Promote to type object when inserted

• Must cast to more specific type when removed

Arrays

u Syntax
• Circle[] x = new Circle[array_size]

u Covariance
• if S <: T then S[] <: T[]

u Standard type error
class A {…}
class B extends A {…}

B[] bArray = new B[10]
A[] aArray = bArray // considered OK since B[] <: A[]

aArray[0] = new A() // allowed but run-time type error

// raises ArrayStoreException

But compare this to C++!!

u Access by pointer: you can't do array subtyping.
B* barr[15];

A* aarr[] = barr; // not allowed

u Direct naming: allowed, but you get garbage !!
B barr[15];

A aarr[] = barr;

aarr[k] translates to *(aarr+sizeof(A)*k)
barr[k] translates to *(barr+sizeof (B)*k)

If sizeof(B) != sizeof(A), you just grab random bits.
Is there any use for this?

5

Afterthought on Java arrays

Date: Fri, 09 Oct 1998 09:41:05 -0600
From: bill joy

Subject: …[discussion about java genericity]

actually, java array covariance was done for less noble reasons …: it
made some generic "bcopy" (memory copy) and like operations much
easier to write...
I proposed to take this out in 95, but it was too late (...).
i think it is unfortunate that it wasn't taken out...

it would have made adding genericity later much cleaner, and [array
covariance] doesn't pay for its complexity today.

wnj

Java Implementation

u Compiler and Virtual Machine
• Compiler produces bytecode

• Virtual machine loads classes on demand, verifies
bytecode properties, interprets code

u Why this design?
• Bytecode interpreter/compilers used before

– Pascal “pcode”; Smalltalk compilers use bytecode

• Minimize machine-dependent part of implementation
– Do optimization on bytecode when possible

– Keep bytecode interpreter simple

• For Java, this gives portability
– Transmit bytecode across network

A.classA.java
Java

Compiler

B.class

Loader

Verifier

Linker

Bytecode Interpreter

Java Virtual Machine

Compile source code

Network

Java Virtual Machine Architecture Class loader

u Runtime system loads classes as needed
• When class is referenced, loader searches for file of

compiled bytecode instructions

u Default loading mechanism can be replaced
• Define alternate ClassLoader object

– Extend the abstract ClassLoader class and implementation
– ClassLoader does not implement abstract method loadClass,

but has methods that can be used to implement loadClass

• Can obtain bytecodes from alternate source
– VM restricts applet communication to site that supplied

applet

Example issue in class loading:

Static members and initialization

class ... {
/* static variable with initial value */

static int x = initial_value
/* ---- static initialization block --- */

static { /* code executed once, when loaded */ }
}

u Initialization is important
• Cannot initialize class fields until loaded

u Static block cannot raise an exception
• Handler may not be installed at class loading time

Verifier

u Bytecode may not come from standard compiler
u Check correctness of bytecode

• Every instruction must have a valid operation code

• Every branch instruction must branch to the start of
some other instruction, not middle of instruction

• Every method must have a structurally correct
signature

• Every instruction obeys the Java type discipline

6

Security Risks

u Denial of Service
• Tie up your CPU, network connection, subnet, …

u Steal private information
• User name, email address, password, credit card, …

u Compromise your system
• Erase files, introduce virus, ...

Why is typing a security feature?

u Jump to arbitrary address
• Virtual machine may lose control over process

• Example: make unauthorized system call

u Goal of intruder
• Cause jump to arbitrary address

u General way to do this
• Try to find address of system call

• Put address in integer variable
• Cast integer to function (or function pointer)

• Call function through this address

For those interested in security

u Princeton security group
• www.cs.princeton.edu

u Buffer overflow
• “Smashing the stack for fun and profit” by Aleph One

Bytecode interpreter

u Standard virtual machine interprets instructions
• Possible to compile bytecode class file to native code

u Java programs can call native methods
• Typically functions written in C

u Multiple bytecodes for method lookup
• invokevirtual - when class of object known

• invokeinterface - when interface of object known

• invokestatic - static methods

• invokespecial - some special cases

invokeinterface <method-spec>

u Sample code
void add2(Incrementable x) { x.inc(); x.inc(); }

u Search for method
• find class of the object operand (operand on stack)

– must implement the interface named in <method-spec>

• search the method table for this class
• find method with the given name and signature

u Call the method
• Usual function call with new activation record, etc.

Why is search necessary?

interface Incrementable {
public void inc();

}
class IntCounter implements Incrementable {

public void add(int);
public void inc();
public int value();

}
class FloatCounter implements Incrementable {

public void inc();
public void add(float);
public float value();

}

7

invokevirtual <method-spec>

u Similar to invokeinterface, but class is known
u Search for method

• search the method table for this class

• find method with the given name and signature

u Can we use static type for efficiency?
• Each execution of an instruction will be to object

from subclass of statically-known class

• Constant offset into vtable, like C++
• See next slide

u Other bytecodes: invokestatic, invokespecial

Bytecode rewriting: invokevirtual

u After search, rewrite bytcode to use fixed offset
into the vtable. No search on second execution.

inv_ virt_quick

vtable offset

Constant pool

“A.foo()”

Bytecode

invokevirtual

Bytecode rewriting: invokeinterface

Cache address of method; check class on second use

inv_ virt_quick

Constant pool

“A.foo()”

Bytecode

invokeinterface “A.foo()”

Java Exceptions

u Similar basic functionality to ML, C++
• Constructs to throw and catch exceptions

• Dynamic scoping of handler

u Some differences
• An exception is an object

• Subtyping between exception classes
– Use subtyping to match type of exception or pass it on …
– Similar functionality to ML pattern matching in hander

• Type of method includes exceptions it can throw
– Actually, only subclasses of Exception
– Exceptions of type RuntimeException and Error excluded

Exception Classes

u If a method may throw a checked exception,
then this must be in the type of the method

Throwable

Exception Runtime
Exception

Error

User-defined
exception classes

Unchecked exceptions

checked
exceptions

Why define new exception types?

u Exception may contain data
• Class Throwable includes a string field so that cause

of exception can be described
• Pass other data by declaring additional fields or

methods

u Subtype hierarchy used to catch exceptions
catch <exception-type> <identifier> { … }
will catch any exception from any subtype of
exception-type and bind object to identifier

8

Try/finally blocks

u Exceptions are caught in try blocks
try {

statements
} catch (ex-type1 identifier1) {

statements
} catch (ex-type2 identifier2) {

statements
} finally {

statements
}

u Implementation: finally compiled to jsr

Java Limitation: Generic Programming

u Java has class Object
• Supertype of all object types

• This allows “subtype polymorphism”
– Can apply operation on class T to any subclass S <: T

u Java does not have templates (generics)
• If f : T → T, and x : S for some S <: T, then f(x) : T

• This is not the same as f : S → S for all S <: T

u Java type system does not let you cheat
• Can cast from supertype to subtype

• Cast is checked at run time

Example generic construct: Lists

u Lists possible for any type of object
• For any type t, can have type list_of_t
• Operations cons, head, tail work for any type

u Define C++ generic list class
template <type t> class List {

private: t* data; List<t> * next;
public: void Cons (t* x) { … }

t* Head () { … }

List<t> Tail () { … }
};

Current Java vs Templates

class Stack {
void push(Object o) { ... }

Object pop() { ... }
...

}
String s = "Hello";

Stack st = new Stack();
...

st.push(s);
...

s = (String) st.pop();

class Stack<A> {
void push(A a) { ... }

A pop() { ... }
...

}
String s = "Hello";

Stack<String> st =
new Stack<String>();

st.push(s);
...

s = st.pop();

Why no templates in Java?

u Many proposals
u Basic language goals seem clear
u Details need to be worked out

• Exact typing constraints
• Implementation

– Existing virtual machine?
– Additional bytecodes?
– Duplicate code for each instance?
– Use same code (with casts) for all instances?

Design Issue

Constraints on object types

u May need operations on parameter type
u In OO language, these are methods of objects
u Ways to guarantee existence of methods:

• Expand at compile time and check
• Compile assuming constraints, check at instantiation

time

u C++
• Link and see if all references can be resolved

u Java
• Maybe do something better, e.g., use interfaces

9

Example: Hash Table

interface Hashable {
int HashCode ();

};
class HashTable < Key implements Hashable, Value> {

void Insert (Key k, Value v) {
int bucket = k.HashCode();

InsertAt (bucket, k, v);
}

…
}; This expression must typecheck.

Java Threads

u Thread
• Set of instructions to be executed one at a time, in a

specified order

u Java thread objects
• Object of class Thread
• Methods

– start : method called to spawn a new thread of control
– run : method called by VM after user calls start
– suspend : freeze execution
– interrupt : freeze execution and throw exception to thread

– stop : forcibly cause thread to halt

Example subclass of Thread

class PrintMany Extends Thread {
private String msg;

public PrintMany (String m) {msg = m;}
public void run() {

try { for (;;){ System.out.print(msg + “ “);
sleep(10);

}
} catch (InterruptedException e) {

return;
}

} (inherits start from Thread)

Synchronization

u Objects may have synchronized methods
u Can be used for mutual exclusion

• Two threads may share an object

• If one calls a synchronized method, this locks object
• If the other thread calls the method while locked, the

second thread will block until object is unlocked.

Java Threads

u Lots of interesting topics
• Parallel GC

• Security and thread groups
• …

u Cover later in connection with other concurrency
issues

Java Summary

u Objects
• have fields and methods

• alloc on heap, access by pointer, garbage collected

u Classes
• Public, Private, Protected, Package (not exactly C++)

• Can have static (class) members
• Constructors and finalize methods

u Inheritance
• Single inheritance

• Final classes and methods

10

Java Summary (II)

u Subtyping
• Determined from inheritance hierarchy

• Class may implement multiple interfaces

u Virtual machine
• Load bytecode for classes at run time

• Verifier checks bytecode
• Interpreter also makes run-time checks

– type casts

– array bounds
– …

• Portability and security are main considerations

Comparison with C++

u Interpreted + Portability + Safety - Efficiency
• Compiled to byte code: a generalized form of

assembly language designed to interpret quickly.
• Byte codes contain type information

u Type safe + Safety +/- Code complexity - Efficiency
• Arrays are bounds checked

• No pointer arithmetic, no unchecked type casts
• Garbage collected

u Almost everything is object + Simplicity - Efficiency

• except for values from a fixed set of basic datatypes.

Comparison (cont’d)

u Objects accessed by ptr + Simplicity - Efficiency
• No problems with direct manipulation of objects

u Garbage collection: + Safety + Simplicity - Efficiency

• Needed to support type safety

u Built-in concurrency support + Portability

• Used for concurrent garbage collection (avoid waiting?)
• Concurrency control via synchronous methods

• Part of network support: download data while executing

u Exceptions
• As in C++, integral part of language design

Comparison (cont’d)

u Removed some of complexity of C++
• Structures and unions

• Functions
– Can use methods instead

• Multiple inheritance
– Too complicated, but have multiple subtyping via interfaces

• Goto

• Operator overloading
– But have method overloading

• Automatic coercions
• Separate pointer types

– All object references are pointers

