
Scheme (circa 1975)

Son of LISP (circa 1960):� applicative programming
“define a function” vs “write a program”
“evaluate a function” vs “run a program”
(interactivity)� the ultimate simple syntax: parenthesized prefix
(N.B. no precedence)� recursion as the standard control structure� recursive types as the standard data type
(S-expressions)� programs as data� automatic memory mgmt (garbage collection)

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 1

Scheme values

Values are S-expressions, where an S-expression is
a symbol (name), e.g., ’a
an integer literal, e.g., 99
a Boolean #t or #f
a list S1 ����� Sn of 0 or more S-expressions

list of 0 elements is ’()

(this characterization of lists is a lie :-)

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 2

S-expressions

Like any other abstract data type� constructors create new values of the type� observers examine values of the type� mutators change values of the type

(No mutators in pure subset)

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 3

S-expression Constructors

’() is the empty list

cons creates new list: (cons S’ S) is the list S’ S

S must be a list: (cons ’a ’()) is
  

a

(cons ’a ’(b)) is

    

a b
’(b) is a literal 1-element list

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 4

S-expression observers

Observers defined only on lists:
(car S) where S is

�
S1 ����� Sn � , n � 0, is S1

(cdr S) where S is
�
S1 ����� Sn � , n � 0, is S2 ����� Sn

(car (cons ’a L)) � ’a

(cdr (cons ’a L)) � L

N.B. (cdr (cons ’a ’())) � ’()

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 5

more S-expression observers

Predicates applying to all types
return #f for false, #t for true

(number? x) #t if x is a number

(symbol? x) #t if x is a symbol

(pair? x) #t if x is non-empty list

(null? x) #t if x is nil

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 6



Constructor/observer correspondences

symbol literal symbol? —

integer literal number? —

cons pair? car, cdr

’() null? —

Notes
atomic vs structured values
primitive vs general constructors

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 7

More constructors and observers

(< x y) #t if numbers x < y

(> x y) #t if numbers x > y

(= s y) #t if numbers x, y are same num-
ber, symbol, Boolean, or ’()

Also the usual arithmetic operators

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 8

Programming with S-expressions

Use recursive functions for a recursive type:
List is ’() or (cons x list)

E.g., length is 0 in base case, 1+length in recursive
case:

(define length (l)

(if (null? l) 0 (+1 (length (cdr l)))))

length applies only to lists.

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 9

Polymorphic equality testing

(define atom? (x)

(or (number? x)

(or (symbol? x)

(or (boolean? x)

(null? x)))))

(define equal? (s1 s2)

(if (or (atom? s1) (atom? s2))

(= s1 s2)

(and (equal? (car s1) (car s2))

(equal? (cdr s1) (cdr s2)))))

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 10

Costs of Cons Cells

Every call to cons must allocate space to hold the
car and cdr.

To append two lists, exploit
�
xX � Y � x

�
XY �

(define append (x y)

(if (null? x) y

(cons (car x) (append (cdr x) y))))

Allocates as many cons cells as elements of x

What if we want to reverse a list?

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 11

Counting cons cells — reversal

Exploit rev
�
xX � �

�
revX � � revx � �

�
revX � x

(define reverse (x)

(if (null ? x) ’()

(append (reverse (cdr x))

(list1 (car x)))))

Cost is 1
2N2 cons cells!

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 12



Cheaper reversal

Reduce cost to N cells with new identities:
�
rev

�
xX ��� Z �

���
revX � � revx ��� Z �

���
revX � x � Z �

�
revX � � xZ �

(define revapp (l z)

(if (null? l) z

(revapp (cdr l) (cons (car l) z))))

And now:

(define reverse (x) (revapp x ’()))

Using extra arguments to build results:
the method of accumulating parameters

a powerful, general programming technique

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 13

Association lists

Abstractly, a mapping from keys to values

Implementation: list of key-value pairs
((k1 v1) (k2 v2) ... (kn vn))

car

caar

cdar

cadar

k1 v1 kn vn

. . .

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 14

A-list observer: find

car

caar

cdar

cadar

k1 v1 kn vn

. . .

(define caar (l) (car (car l)))

(define cdar (l) (cdr (car l)))

(define cadar (l) (car (cdar l)))

(define find (x alist)

(if (null? alist) ’()

(if (equal? x (caar alist))

(cadar alist)

(find x (cdr alist)))))

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 15

A-list constructor: bind

car

caar

cdar

cadar

k1 v1 kn vn

. . .

No side effects:

(define bind (x y alist)

(if (null? alist)

(list1 (list2 x y))

(if (= x (caar alist))

(cons (list2 x y) (cdr alist))

(cons (car alist) (bind x y (cdr alist))))))

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 16

A-list example

-> (find ’Room ’((Course 152)

(Instructor Ramsey) (Room (MD G135))))

(MD G135)

-> (val nr (bind ’Office ’(MD 231)

(bind ’Course 152

(bind ’Email ’cs152@fas ’()))))

((Email cs152@fas) (Course 152) (Office (MD 231)))

-> (find ’Office nr)

(MD 231)

-> (find ’Favorite-Food nr)

()

Attributes can be lists, not just symbols
“Not found” � “nil”

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 17

Truth about S-expressions

S-expression is symbol, number, Boolean, or pair
of S-expressions

So, (cons 2 3) is legal
’() terminates list just by convention!

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 18



Let and local variables

(let ((x1 e1)

(x2 e2)
...

(xn en)) e)

“Evaluate e1 � ����� � en, bind answers to x1 � ����� � xn”� Name intermediate results (avoid recomputation)� Creates new environment
ρ
�
x1 �� e1 � ����� � xn �� en � , used to evaluate e

Also
let* bind one at a time

letrec local recursive functions

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 19

More about let

lambda can do the job, but seems unnatural

(let ((x1 e1) ����� (xn en)) e)

Exactly equivalent to
((lambda (x1 x2 ... xn) e) e1 e2 ... en)

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 20

Functional Programming in Scheme

Things that should offend you about Impcore:� different interface for looking up function vs
variable� have to walk through 2 or 3 environments for
variables� can’t create a function without giving it a name
– means high overhead for using functions
– sign of 2nd-class citizenship in general

(structs)

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 21

Solution to all problems

λ
c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 22

Lambda Abstraction

Taken from Church’s λ-calculus

(lambda (x) (+ x x))

“The function that maps x to x plus x”

At top level, just like define

In general, λx � E, also written (lambda (x) E)

x is bound in E
other variables are free in E

Free variables make things interesting

(lambda (x) (+ x y))

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 23

Nested functions

Inner funs use parameters, variables of outer funs� implementation uses “static links” or “displays”� count different in nesting depth� maintain stack at run time
different from the call stack!� can identify at compile time which variables are

used
hence “static scoping”
(compile-time name resolution)

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 24



History—functions as arguments

Begin to treat functions as values
Example: general zero-finder

int findzero(int (*f)(int)) {

int lo=0, hi=1000, k;

while (lo + 1 < hi) {

k = (lo + hi) / 2;

if (f(k) < 0) lo = k;

else hi = k;

}

return hi;

}

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 25

Finding roots

Nth root of k by finding zero of xn � k

Can do for any n—use nested function, find its root:

-> (define power (x n)
(if (= n 0) 1 (* x (power x (- n 1)))))

-> (define nth-root-of-k (n k)
(let
((x-to-the-n-minus-k (lambda (x)

(- (power x n) k))))
(findzero x-to-the-n-minus-k)))

-> (nth-root-of-k 3 27)
3

So-called “downward funargs”—down the call stack
free variables are in calling context, which is always live

Possible in Ada, Clu, Modula, Pascal �����

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 26

Downward funargs

While calling x-to-the-n-minus-k,
nth-root-of-k remains active:

can get to n and k on the call stack

n
t
h
-
r
o
o
t
-
o
f
-
k

�
� 3

�
� 2

7

f
i
n
d
z
e
r
o

�
�

�	��

�
�


 �

� 0

��

� 1
00

0

�
� 5

00

x
-
t
o
-
t
h
e
-
n
-
m
i
n
u
s
-
k


�
�
�
��

�
� 5

00

�
� 1

�

� 1

�
�
�

�
�
�

�
�
��

�
�
�
� 4

�

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 27

More history—functions as results

Functions as values
suppose you don’t want zero-finder mixed in?

-> (define to-the-n-minus-k (n k)

(let

((x-to-the-n-minus-k (lambda (x)

(- (power x n) k))))

x-to-the-n-minus-k))

-> (val x-cubed-minus-27 (to-the-n-minus-k 3 27))

-> (x-cubed-minus-27 2)

-19

x-to-the-n-minus-k “escapes” its original context

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 28

The “upward funarg problem”

How functions escape:� return a function� assign function to global� store in heap-allocated data structure

To see problem, imagine implementation:
when call to to-the-n-minus-k returns,
where are n and k ?

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 29

Upward funargs

nth-root-of-k returns & its parameters vanish!
code for x-to-the-n-minus-k

n
t
h
-
r
o
o
t
-
o
f
-
k

�
� 3

�
� 2

7

r
e
t
u
r
n

� ��

�
�

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 30



Closures

To have a function value, we need the equivalent of���
λx � e � ρ ��� , where ρ binds all the free variables of e

This agglutination is called a closure
In a compiled sysem, a record containing� pointer to the code� all the free variables

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 31

Operational semantics of closures

�
LAMBDA

���
x1 � ����� � xn � � e � � ρ � σ ��� �����

LAMBDA
���

x1 � ����� � xn � � e � � ρ ��� � σ �
(MKCLOSURE)

	
1 � ����� � 	 n 
� domσ�

e � ρ � σ ��� �����
LAMBDA

���
x1 � ����� � xn � � ec � � ρc ��� � σ0 ��

e1 � ρ � σ0 ��� �
v1 � σ1 �

...�
en � ρ � σn 
 1 ��� �

vn � σn ��
ec � ρc

�
x1 �� 	

1 � ����� � xn �� 	
n � � σn

� 	
1 �� v1 � ����� � 	 n �� vn � � �

v � σ ������
APPLY

�
e � e1 � ����� � en � � ρ � σ ��� �

v � σ ���
(APPLYCLOSURE)

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 32

Closures change the game

Higher-order functions� Functions that take [existing] functions as
arguments (mildly amusing)� Functions that return [new] functions
(surprisingly powerful)

-> (define o (f g) (lambda (x) (f (g x))))

-> (define even? (n) (= 0 (mod n 2)))

-> (val odd? (o not even?))

-> (odd? 3)

#t

-> (odd? 4)

#f

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 33

Examples in Scheme: Currying

-> (val positive? (lambda (y) (< 0 y)))

-> (positive? 3)

#t

-> (val <-curried (lambda (x) (lambda (y) (< x y))))

-> (val positive? (<-curried 0))

-> (positive? 0)

#f

-> (val curry ; binary function -> value -> function

(lambda (f)

(lambda (x)

(lambda (y) (f x y)))))

-> (val positive? ((curry <) 0))

-> (positive? -3)

#f

-> (positive? 11)

#t

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 34

λ as program structuring tool

Global variables are vulnerable:
-> (set seed 1)

-> (set rand (lambda ()

(set seed (mod (+ (* seed 9) 5) 1024)))))

-> (rand)

14

-> (rand)

131

-> (set seed 1)

1

-> (rand)

14

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 35

λ: the ultimate protection

Idea: Hide internal variable seed inside λ
(nobody else can touch)

-> (set init-rand (lambda (seed)

(lambda ()

(set seed (mod (+ (* seed 9) 5) 1024))))))

-> (set rand (init-rand 1))

-> (rand)

14

-> (rand)

131

-> (set seed 1)

1

-> (rand)

160

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 36



Standard higher-order functions

Common computations on lists:

exists? Does any element satisfy predicate?

filter Select elements satisfing predicate

map Apply function to elements

fold General list computations

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 37

List fun. exists?: does an element exist?

-> (define exists? (p? l)

(if (null? l)

#f

(if (p? (car l))

#t

(exists? p? (cdr l)))))

-> (exists? pair? ’(1 2 3))

#f

-> (exists? pair? ’(1 2 (3)))

#t

-> (exists? ((curry =) 0) ’(1 2 3))

#f

-> (exists? ((curry =) 0) ’(0 1 2 3))

#t

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 38

List fun. filter: select some elements

-> (define filter (p? l)

(if (null? l)

’()

(if (p? (car l))

(cons (car l) (filter p? (cdr l)))

(filter p? (cdr l)))))

-> (filter (lambda (n) (> n 0)) ’(1 2 -3 -4 5 6))

(1 2 5 6)

-> (filter (lambda (n) (<= n 0)) ’(1 2 -3 -4 5 6))

(-3 -4)

-> (filter ((curry <) 0) ’(1 2 -3 -4 5 6))

(1 2 5 6)

-> (filter ((curry >=) 0) ’(1 2 -3 -4 5 6))

(-3 -4)

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 39

List filtering: composition revisited

-> (val positive? ((curry <) 0))

<procedure>

-> (filter positive? ’(1 2 -3 -4 5 6))

(1 2 5 6)

-> (filter (o not positive?) ’(1 2 -3 -4 5 6))

(-3 -4)

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 40

List function map: apply function to list

-> (define map (f l)

(if (null? l)

’()

(cons (f (car l)) (map f (cdr l)))))

-> (map number? ’(3 a b (5 6)))

(#t #f #f #f)

-> (map ((curry *) 100) ’(5 6 7))

(500 600 700)

-> (val square* ((curry map) (lambda (n) (* n n))))

<procedure>

-> (square* ’(1 2 3 4 5))

(1 4 9 16 25)

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 41

Grand-daddy of list functions: fold

Idea is: λ � � λ0 � x1
� � ��� �

xn
�

0
Need the identity element of + (call it zero):

-> (define foldr (plus zero l)

(if (null? l)

zero

(plus (car l) (foldr plus zero (cdr l)))))

-> (val sum (lambda (l) (foldr + 0 l)))

-> (val prod (lambda (l) (foldr * 1 l)))

-> (sum ’(1 2 3 4))

10

-> (prod ’(1 2 3 4))

24

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 42



Another view of operator folding

’(1 2 3 4) � (cons 1 (cons 2 (cons 3 (cons 4 ’()))))

(foldr + 0 ’(1 2 3 4))

� (+ 1 (+ 2 (+ 3 (+ 4 0 ))))

(foldr f z ’(1 2 3 4))

� (f 1 (f 2 (f 3 (f 4 z ))))

foldr is a member of a class of transformations:
catamorphisms

Works with any recursive datatype—often useful

Another catamorphism: foldl associates to left

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 43

Sets revisited

Higher-order functions lead to more compact code:

-> (val emptyset ’())

-> (define member? (x s)

(exists? ((curry equal?) x) s))

-> (define add-element (x s)

(if (member? x s) s (cons x s)))

-> (define union (s1 s2) (foldl add-element s1 s2))

-> (define set-from-list (l) (foldl add-element ’() l))

-> (union ’(1 2 3 4) ’(2 4 6 8))

(8 6 1 2 3 4)

A few higher-order functions go a long way
Example: Quicksort in 10 lines

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 44

Generalized equality for alists

“Built-in” equal won’t do for association lists

A-lists equal if each has same associations as the
other:

al1 � al2 iff al1
�

al2 � al2
�

al1

(define sub-alist? (al1 al2)

(not (exists?

(lambda (pair)

(not (equal? (cadr pair)

(find (car pair) al2))))

al1)))

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 45

Equality from subset

-> (define =alist? (al1 al2)

(if (sub-alist? al1 al2) (sub-alist? al2 al1) #f))

-> (=alist? ’() ’())

#t

-> (=alist? ’((E coli)(I Magnin)(U Thant))

’((E coli)(I Ching)(U Thant)))

#f

-> (=alist? ’((U Thant)(I Ching)(E coli))

’((E coli)(I Ching)(U Thant)))

#t

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 46

Sets of alists

Where to put the equality function?
1. Extra argument — awkward

(define member? (x s eqfun)

(exists? ((curry eqfun) x) s))

(define add-element (x s eqfun)

(if (member? x s eqfun) s (cons x s)))

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 47

Sets of alists, continued

2. Make set pair (eqfun . elems) of equality
function, elements:

(define mk-set (eqfun elements) (cons eqfun elements))

(define eqfun-of (set) (car set))

(define elements-of (set) (cdr set))

(val emptyset (lambda (eqfun) (mk-set eqfun ’())))

(define member? (x s)

(exists? ((curry (eqfun-of s)) x) (elements-of s)))

(define add-element (x s)

(if (member? x s) s

(mk-set (eqfun-of s) (cons x (elements-of s)))))

Works, but costs an extra cons cell per instance

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 48



Sets of alists continued
3. Curry! Equality function as part of operations:

(val mk-set-ops (lambda (eqfun)

(list2

(lambda (x s) (exists? ((curry eqfun) x) s))

(lambda (x s)

(if (exists? ((curry eqfun) x) s) s

(cons x s))))))

(val al-nullset ’())

(val list-of-al-ops (mk-set-ops =alist?))

(val al-member? (car list-of-al-ops))

(val al-add-element (cadr list-of-al-ops))

Must create new ops for every new equality test
best w/few types, static checking

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 49

Continuations—what to do next

Direct style: functions finish by returning a value

Continuation-passing style (CPS): functions finish
by “throwing” value to continuation� Not like a call, because it never returns� “Goto with arguments”

Can simulate with ordinary tail call

Direct: return answer;

True CPS: throw k answer;

Simulated CPS: return k(answer);

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 50

Application of continuations

find can’t distinguish “unbound” from “bound to nil”

(define find (x alist)

(if (null? alist) ’()

(if (equal? x (caar alist))

(cadar alist)

(find x (cdr alist)))))

Could use different kinds of return values, e.g.,
� if found, (cons #t (caar alist))
� if not found, (cons #f ’irrelevant)

But this is clunky and costs extra cons cells.

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 51

Success and failure continuations

(define find-c (key alist success-cont failure-cont)

(letrec

((search (lambda (alist)

(if (null? alist)

(failure-cont)

(if (equal? key (caar alist))

(success-cont (cadar alist))

(search (cdr alist)))))))

(search alist)))

Example: table with default

(define find-default (key table default)

(find-c key table (lambda (x) x)

(lambda () default)))

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 52

Continuations for search problems

solver
start

fail

succeed

resume

start Begin with partial solution

fail Partial solution won’t work

succeed Pass on improved solution

resume If improved solution won’t work, keep
trying

A composable unit!

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 53

Moral: functions are cheap

Use lots of them

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 54



Semantics and implementation of µScheme

Key changes from Impcore:� New language constructs: let, lambda,
application� New values, including functions (closures)� Single environment� Environments get copied� Environment maps names to mutable locations
(not values)

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 55

µScheme vs Impcore

New abstract syntax:
LET (keyword, names, expressions, body)
LAMBDAX (formals, body)
APPLY (exp, actuals)

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 56

Evaluation rules

Judgment
�
e � ρ � σ ��� �

v � σ �
σ is the store

x � domρ ρ
�
x � � domσ�

VAR
�
x � � ρ � σ � � �

σ
�
ρ
�
x ��� � σ � (VAR)

x � domρ ρ
�
x � �

	 �
e � ρ � σ ��� �

v � σ � ��
SET

�
x � e � � ρ � σ ��� �

v � σ � � 	 �� v � � (ASSIGN)

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 57

Implementation of closures

Key issue: values of free variables

Static scoping:
at the location of lambda, “look outward” for ρ
keep that ρ until we need it

�
LAMBDA

���
x1 � ����� � xn � � e � � ρ � σ ��� �����

LAMBDA
���

x1 � ����� � xn � � e � � ρ ��� � σ �
(MKCLOSURE)

So, create closure in eval by

case LAMBDAX:

return mkClosure(e->u.lambdax, env);

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 58

Applying closures

Saved environment for free variables
Arguments for bound variables ( � formal parameters)

�
1 � ����� � � n �� domσ�

e � ρ � σ ��� ��� �
LAMBDA 	 � x1 � ����� � xn � � ec 
 � ρc � � � σ0 ��

e1 � ρ � σ0 ��� �
v1 � σ1 �

...�
en � ρ � σn � 1 ��� �

vn � σn ��
ec � ρc � x1 
� �

1 � ����� � xn 
� �
n � � σn � � 1 
� v1 � ����� � � n 
� vn � � �

v � σ � ����
APPLY 	 e � e1 � ����� � en 
 � ρ � σ ��� �

v � σ � �
(APPLYCLOSURE)

nl = f.u.closure.lambda.formals;

return eval(f.u.closure.lambda.body,

bindalloclist(nl, vl, f.u.closure.env));

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 59

Locations in closures

Key is shared mutable state
-> (val resettable-counter-from

(lambda (n)
(list2

(lambda () (set n (+ n 1)))
(lambda () (set n 0)))))

-> (val twenty (resettable-counter-from 20))
-> ((car twenty))
21
-> ((car twenty))
22
-> ((cadr twenty))
0
-> ((car twenty))
1

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 60



Real closures

As in Kamin, closures stored on the heap.
BUT:

contain only free vars needed, not whole ρ
name lookup done at compile time

Example: SML/NJ has closure register, arg register.

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 61

SML/NJ closures

(val map (lambda (f)

(lambda (l)

(if (null? l) ’()

(cons (f (car l)) ((map f) (cdr l))))))

Translation of map f uses

l � ARG

f � CLOSURE[1]

(map f) � CLOSURE

body becomes machine code for
if ARG is null then

return NIL

else

return (cons (CLOSURE[1] (car ARG))

(CLOSURE (cdr ARG)))

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 62

Closures in pictures

(val map (lambda (f)

(lambda (l)

(if (null? l) ’()

(cons (f (car l)) ((map f) (cdr l))))))

closure for (map f)

�

�

code for (if (null? �����
closure for f

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 63

Closure optimizations

Major issue in making functional programs efficient

Heavy static analysis for:
keeping closures on the stack

(when used as downward funargs)
sharing closures

(e.g., mutually recursive functions)
eliminating closures

(e.g., when functions never escape)

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 64

Scoping

Problem also called name resolution:
given an occurrence of variable x, which
declaration of x is meant?

or
what is denoted by this occurrence of x?

Scoping rules come in two categories
static—can answer for each x at compile time
dynamic—can’t tell until run time

(might change during program execution!)

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 65

Static Scoping

What we all know and love

Works by examining source text.

Scope of a declaration of x
region of source text in which occurrences
of x resolve to that declaration

Typical scoping strategy:� divide source regions into “blocks”� scope runs from declaration to end of block� used in Algol, Pascal, C, Modula, Scheme, ML, ...

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 66



More Static Scoping

Sometimes blocks can be nested:� inner declaration can “hide” outer declaration� outer declaration now suffers from “hole in the
scope”

Scope rules easy to express as computations on
environments� like our interpreters, but done at compile time� we’ll see more when we get denotational

semantics

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 67

Scoping—block structure

(Misleading) term block structure refers to nested
functions� without block structure, no funarg problems

(since all nonlocals must be global & live
forever)� therefore, functions are perfectly good values� C, C++, Icon fit this category

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 68

Static Scoping with Multiple Name Spaces

One name, one region, many meanings

Example, C:� variable names� typedef names� struct and union tags

Each “name space” is simply an environment

More C:� members of struct define their own name
space� typical compilers keep a tiny environment with
the declaration of the structure type

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 69

Multiple Name Spaces, continued

Recall Impcore: functions in one name space,
variables in another

-> (define f (x) (+ x 1))

-> (set f 3)

-> (f f)

4

Multiple name spaces have good and bad points:� permits more natural use of names� too many name spaces can confuse the user
(my opinion: C is pushing the limit)

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 70

Dynamic Scoping

Has origins in an implementation bug in LISP� resolve free variables using “currently active”
functions
(walk up the call stack looking for parameter
names)� makes lambda essentially useless� but environments are never copied (no closures)

Other languages have other dynamic scope rules

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 71

PostScript Dynamic Scoping

Example, PostScript� “environment frame” is a first-class value
(“dictionary”)� current environment determined by “dictionary
stack”� primitive operators to add, remove frames from
stack� can play some wonderful dirty tricks

e.g., use exactly the same code to print
values, trace pointers for garbage collection� BUT, creating local variables is a lot of work!

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 72



TEX Dynamic Scoping

Example, TEX� has both compile-time and run-time binding� compile time is much like closure formation� run time is much like PostScript,
except frames are not first class
(can only modify current environment
frame)

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 73

Object-oriented Dynamic Scoping

Example, object orientation� Can’t tell what “method” will be invoked at
compile time� But, can sometimes get some static checking
anyway� Most O-O languages have static scoping for
variables

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 74

Applying Scheme: Programs as data

Natural representation for Scheme programs as
S-expressions

Classic example is Scheme interpreter in Scheme
“metacircular evaluator”

-> (read-eval-print ’(

(+ 3 (* 4 5))

(val abs (lambda (x) (if (< x 0) (- 0 x) x)))

(abs -77)

(cdr (quote (a b c)))))

23

77

(b c)

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 75

Metacircular evaluator, part 1

To begin, simple arithmetic and constants:
(define eval (exp)

(if (number? exp) exp

(apply-op (car exp)

(eval (cadr exp))

(eval (caddr exp)))))

(define apply-op (f x y)

(if (= f ’+) (+ x y)

(if (= f ’-) (- x y)

(if (= f ’*) (* x y)

(if (= f ’/) (/ x y) ’error!)))))

-> (eval ’(+ 3 (* 4 5)))

23 ; applications are always binary

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 76

Evaluation with variables

For variables, need environments:
variable/value pairs in association list rho

(define eval (exp rho)

(if (number? exp) exp

(if (symbol? exp) (assoc exp rho)

(apply-op (car exp)

(eval (cadr exp) rho)

(eval (caddr exp) rho)))))

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 77

Evaluating quotation, unary ops

(define eval (exp rho)

...

(if (= (car exp) ’quote) (cadr exp)

(if (= (length exp) 2)

(apply-unary-op (car exp) (eval (cadr exp) rho))

(apply-binary-op (car exp) (eval ...)))))

-> (eval ’(cons 3 (cons (+ i j) (quote ())))

(mkassoc ’i 5 (mkassoc ’j 3 ’())))

(3 8)

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 78



Evaluation with functions

For functions, pass 3rd association list, binding functions to
bodies: body includes arguments
-> (eval ’(double 4) ’()

’((double ((a) (+ a a)))))

8

Given fun exp, (car exp) is formals, (cadr exp) is body

(define eval (exp rho fundefs)

...

(if (userfun? (car exp) fundefs)

(apply-userfun (assoc (car exp) fundefs)

(evallist (cdr exp) rho fundefs)

fundefs)

... )

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 79

Applying user-defined functions

Note similarity with code in basic evaluator:
(define apply-userfun (fundef args fundefs)

(eval (cadr fundef) ; body of function
(mkassoc* (car fundef) args ’()) ; local env
fundefs))

where
(define mkassoc* (keys values al) ; like mkEnv

(if (null? keys) al

(mkassoc* (cdr keys) (cdr values)

(mkassoc (car keys) (car values) al))))

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 80

Top-level eval

Don’t have read to get S-expression, so use quoting:
(r-e-p-loop ’(

(+ 3 4)

(define double (a) (+ a a)

(double (car (quote (4 5))))) )

(7 double 8) ; “results list”
Where
(define r-e-p-loop* (inputs fundefs)

...

(if (= (caar inputs) ’define) ; function definition
(process-

def (car inputs) (cdr inputs) fundefs)

(process-

exp (car inputs) (cdr inptus) fundefs))

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 81

...)

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 82

Elements of top-level eval

process-exp conses onto result list:
(define process-exp (e inputs fundefs)

(cons (eval e ’() fundefs) ; cons value of e
(r-e-p-loop* inputs fundefs)))

process-def adds to fundefs:
(define process-def (e inputs fundefs)

(cons (cadr e) ; cons function name to results
(r-e-p-loop* inputs

(mkassoc (cadr e) (cddr e) fun-

defs))))

Evaluator is “meta-circular” — can evaluate itself

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 83

Scheme as it really is

Conditional expressions avoid if-else parenthesis
nightmare

(cond (e1 e1’) if e1 then e1’

(e2 e2’’) elsif e2 then e2’
...

...

(en en’)) elsif en then en’

Eval until one of the guards is true, then take
corresponding expression. So (if e1 e2 e3) is
really

(cond (e1 e2)

(#t e3))

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 84



More real Scheme

Macros� functions that manipulate S-expressions (at
compile time)� hygienic macros—name clashes impossible� let, and, etc., implemented as macros

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 85

Even More real Scheme

Mutation
(set-car! ’(a b c) ’d) => (d b c)� modifies original list� can create circular lists, sharing� avoids allocation (cons)

Garbage collection: reclaim and reuse unreachable
cons cells

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 86

Real Scheme—continuations

Call with current continuation:
(call/cc (lambda (k) ����� body ����� ) )

Continuation k is “what will be done with result of body”

E.g., can call (k 1) to return 1 “instantly”
activations in progress are abandoned

If k escapes, could return to body even after it finishes!

Like closures, need activation records on the heap

Building block for control flow:
� multithreading
� exception handling

Will revisit later in the term

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 87

Real Scheme—tail calls

Imperative style list-reverse (in C):

List revimp(List l) {

List r;

for (r = NULL; l; l = l->cdr)

r = cons(l->car, r);

return r;

}

Uses constant stack space

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 88

Tail calls, continued

Write functionally?

List revapp(List l, List r) {

if (l) then

return revapp(l->cdr, cons(l->car, r));

else

return r;

}

List rev(List l) { return revapp(l, NULL); }

Uses stack space proportional to length of l
call; call; call; .... call; return; return; return; ... ; return

But, the call is the last thing in the body. Try this:
call; return; call; return; ... call; return

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 89

Optimized tail calls

call; return; call; return; ... call; return

Idea: when call is recursive, implement return; call; by
assignment and goto

Total result is
call; return

OK even when tail call is not recursive (good exam question!)

True Scheme implementations must optimize tail calls
“proper tail recursion”

(Actually applies to all tail calls)

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 90



Why tail calls matter

Recursive function becomes the same as a loop
consumes constant space, and also faster!

Function call becomes
“goto with arguments” or
“assignment plus goto”

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 91

Tail recursion and factorial

Non-tail-recursive factorial

(set fact (lambda (n)

(if (= n 1) 1

(* n (fact (- n 1))))))

Requires n simultaneous activations of fact

Tail-recursive version:
(set fact (lambda (n)

(letrec (

(f (lambda (i product) ; product of 1 � � i � 1
(if (> i n) product

(f (+ i 1) (* i product)))))

) (f 1 1))))

Never more than 1 fact active at a time: compile into a loop!

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 92

Real systems

Common Lisp:� Big systems ( � 1000 builtins)

Scheme:� Big programming environments (MzScheme,
DrScheme)� Tiny embedded interpreters (libscheme)� Everything in between

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 93

Assessment

High-level data structures
lists powerful for programming
symbols give instant enumeration
tables as powerful — can be efficiently
implemented

Cheap, easy recursion
a good fit for recursively defined types
a natural for symbolic computing

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 94

Assessment

Safety and convenience of garbage collection
hard to overestimate
historical performance highly variable� early systems embarrassing� modern systems outperform hand

allocation

Programs as data a remarkable paradigm
dynamic analysis
dynamic construction (e.g., tactics)

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 95

Assessment

LISPers invented first (and best) programming
environments

everything interactive and dynamic

Difficult to eliminate errors at compile time� no compile-time checking in language� everything represented as (exposed) list
hence mind-boggling caddr and friends� so you need a good programming environment

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 96



Assessment

lambda is a major win� can’t do it justice in this short time� but we’ll see it some more in ML� has a real implementation cost
heap-allocated closures
(copying environments)

Before leaving the LISP family, some comments
about parentheses� a major barrier to many people� but as many people find it elegant� last word: enables programs as data

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 97

What LISP really stands for

Land of

Infinite

Stupid

Parentheses

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 98


