
CS 152: Programming Languages

http://www.fas.harvard.edu/˜cs152

Time and Place: MWF 11:00–12:00, MD G135

Email: cs152@fas.harvard.edu

Course staff: Norman Ramsey, MD 231

Christian Carrillo

Russ Cox

Brenda Ng

(MD � Maxwell Dworkin)

What are programming languages for?

Express computations
� precisely,
� at a high level,
� in a way we can reason about them.

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 2

Why study programming languages?

Learn new ways of thinking about programming
language shapes thought —Whorf

Writing programs is fundamental

Learn how language can help or hinder

Become a sophisticated, skeptical consumer

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 3

CS 152 Agenda

Intellectual tools to understand & evaluate languages
� Language features
� Questions with answers

Learn the notations of the trade
� Precise way to model languages
� Foundation for further study

Learn by doing
� Write lots of (mostly short) programs
� Many difficult programs (thought required)

(High difficulty per line of code)

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 4

Study of Language � Study of Features

Language features influences code (Whorf)

Choose abstractions (languages) to fit needs

Build your vocabulary (add to your toolbox)
Higher-order functions
Polymorphism (reuse)
Pattern matching for symbolic computing
Data for symbolic computing: lists, tables, sets
Abstract datatypes, encapsulation
Objects and subtyping
Modules, parameterization
Searching and backtracking

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 5

How to use Features

From the definition of Scheme:
Programming languages should be designed
not by piling feature on top of feature, but by
removing the weaknesses and restrictions
that make additional features appear
necessary.

(Larry Wall and Bjarne Stroustrup might not agree.)

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 6

Orientation: Language Design

Theory

Language
Design

Programming
Methodology Implementation

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 7

Influence of Theory

Functional programming
Type systems
Formal semantics:

Operational semantics
Denotational semantics
Axiomatic semantics
Predicate transformers

Context-free languages
Parsing theory
Attribute grammars

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 8

Influence of Methodology

Programming methodologies, software engineering
Abstract data types
Modules (including “generics”)
Objects and inheritance
Separate compilation/smart recompilation

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 9

Influence of Implementation

Techniques
Parser generators
Attribute-grammar systems
Memory allocation
Garbage collection
Runtime typing/tagging
Efficiency concerns

fast execution
fast compilation
fast program construction

(Primary topic of CS 153)

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 10

Some design dimensions

Typing
strong vs. weak (ill-defined terms)
static
dynamic
polymorphic

First-class values
structures?
procedures? (funarg problem)
are built-in types different?

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 11

More design dimensions

Safety
no unexplained core dumps (and more �����)

Control flow
stack-based
heap-based, closures & continuations
logic programming (Prolog, unification)
backtracking (Icon)

Non-dimensions:
“Simplicity,” “Orthogonality,” “Readability”
�����

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 12

Administrivia — Grading

Weight of grades:

homeworks/projects 55%

term paper 15%

midterm exam 10%

final exam 20%

Weights may be adjusted at instructor’s discretion.

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 13

Administrivia — Homework

About 1 per week

Readability counts!

Most submitted electronically (at midnight)

Up to 10 late days for homework (
�

48 hours per)

Homework graded 7 days after 48-hour deadline

Regrading possible — entire assignment regraded
(must request within 7 days)

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 14

Administrivia — Working together

Collaborate! (Up to a point)
� what professionals do
� vital to your success
� discuss problems, techniques, ideas
� all discussions must be acknowledged

Must not collaborate on code
� must not even see another student’s code

Seek answers in the library
� must be acknowledged
� don’t overuse

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 15

Administrivia — Policies, procedures

Policies and procedures
� handed out in class
� on the web

Know what is expected

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 16

Administrivia — Computing, communication

Course run on FAS Unix servers (“ice”)

Class discussion and questions
� questions to cs152@fas
� answers, discussion on newsgroup
harvard.course.cs152

Do not send email directly to course staff

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 17

Prerequisites

Very good programming skills

C (or C++)

Unix

Basic mathematics (set theory, logic, induction)
(satisfied by 121, �����)

“A strong stomach for theory”

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 18

Course of Study

Survey possibilities
� much talk, little learning
� much work, much learning (develop skills)

Focus on
� semantics, not syntax
� the unusual, not the common (ML, not C++)
� answerable questions

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 19

Methods of study

Case studies of interpreters
� Learn foundations of languages by

studying and modifying implementations
� Study abstracted “essentials” of languages
� (Mostly) uniform implementation framework

Supplement by
� Implementation-independent theory:

λ-calculus
type theory
operational and denotational semantics

� Work with real languages
� Writing

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 20

Readings

Kamin, Ramsey, and Cox
distilled essence of languages
uniform syntax, implementation framework

Augment with real languages (spectrum)

Standard ML
major functional language
remarkable ideas
efficient implementation
Ullman’s text: intro for C programmers

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 21

Allison
Theory for the practitioner
Denotational semantics as a designer’s tool

Cardelli — master of type systems

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 22

Syllabus

Unit/Language Concepts

Imp. Core environments, bindings, ASTs,
operational semantics

Scheme S-expressions, recursion and lists,
programs as data, first-class &
higher-order functions

Memory mgmt garbage collection

λ-calculus normal form, reduction, eval order,
type systems, formal semantics

ML polymorphic typing, type inference

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 23

More syllabus

Unit/Language Concepts

CLU abstract datatypes

Smalltalk object-oriented programming

Standard ML modules, exceptions

Prolog logic programming, unification

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 24

Part I: Basics

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 25

Forms and translation of programs

Characters (file)

Tokens

�
lexer

Abstract-Syntax Trees (ASTs)

�
parser

Intermediate Forms

�
static semantics

Quadruples

�
optimizer?

Assembly Instructions

�
code generator

Machine Instructions

�
assembler

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 26

Supporting cast

Compile time
� Symbol table (implements environments)

Run time
� Instrumentation

– profiling, tracing, testing
� Run-time system

– dynamic typing
– memory management
– exceptions

� Debugging

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 27

An Imperative Core

Models heart of most languages

Trivial syntax (syntax � CS 153)
parenthesized prefix expressions (LISP-like)

Two kinds of inputs
� function definitions

(define mod (m n) (- m (* n (/ m n))))

like the C function
int mod (int m, int n) {

return m - n * (m / n);

}
� expressions

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 28

An expression-oriented language

Expressions include control flow (no “statements”)

(if e1 e2 e3) if (e1) e2; else e3;

(while e1 e2) while (e1) e2; 0

(set x e) x = e

(begin e1 ... en) (e1; ... ; en)

(f e1 ... en) f(e1, ... , en)

f may be primitive or defined with (define f ...)

primitives include:

+ - * / = < > print

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 29

More Impcore

Datatypes: integer
(we have functions, but they aren’t values)

Scopes (name spaces, environments):
2 levels only: globals, formals
no local variables:

use excess formals (as in awk)
will fix for homework

functions live in their own name space
(not shared with variables)

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 30

Separate name spaces at work

-> (val f 33)

33

-> (define f (x) (+ x x))

f

-> (f f)

66

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 31

Impcore concrete syntax

toplevel � expression
�� fundef

�� val-binding
�� (use filename)

fundef �
(define function-name formals expression)

arglist �
(

�
parameter-name �)

val-binding � (val variable-name expression)
expression � literal-value�

variable-name�
(if expression expression expression)�
(while expression expression)�
(set variable-name expression)�
(begin expression

�
expression �)�

(op
�
expression �)

op � function-name
�� + �� - �� * �� / �� = �� < �� > �� print

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 32

More syntax

literal-value � integer

integer � digits, with optional - sign

*-name � characters, but not (); or blank

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 33

Abstract syntax

Input translated into efficient internal
representation: abstract-syntax tree exp

LITERAL (integer)
VAR (name)
SET (name, exp)
IFX (exp, exp, exp)
WHILEX (exp, exp)
BEGIN (explist)
APPLY (name, explist)

Both built-in and user-defined functions are
“application”

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 34

Representing abstract syntax

A recursive type: typedef struct Exp Exp;

struct Exp {

enum

{ LITERAL, VAR, SET, IFX, WHILEX, BEGIN, APPLY } ty;

union {

Value literal;

Name *var;

struct { Name *name; Exp *exp; } set;

struct { Exp *cond; Exp *true; Exp *false; } ifx;

struct { Exp *cond; Exp *exp; } whilex;

Explist *begin;

struct { Name *name; Explist *arglist; } apply;

} u;

};

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 35

Example AST

Given input (f x (* y 3)) :

f

APPLY

Explist

x

VAR

*

APPLY

Explist

y

VAR

3

LITERAL

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 36

Another AST

(define abs (x) (if (< x 0) (- 0 x) x)):

abs

DEFINE

x

Namelist

IFX

<

APPLY

-

APPLY

x

VAR

Explist

x

VAR

0

LITERAL

Explist

0

LITERAL

x

VAR

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 37

Meanings, part I: names

Focus on environments:
associate values with variables

Environment ρ is mapping
�
x1 �� n1 � ����� xk �� nk � ,

which associates variables xi with values ni.

ρ � x � denotes value associated with variable x in
environment ρ

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 38

Environments as abstract type

Declaration:
typedef struct Valenv Valenv;

Constructor:
Valenv *mkValenv(Namelist *vars, Valuelist *vals);

Observers:
int isvalbound(Name *name, Valenv *env);

Value fetchval(Name *name, Valenv *env);

Mutator:
void bindval(Name *name, Value val, Valenv *env);

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 39

Implementing environments

Use pair of lists, e.g., after

(set x 1)

(set y 2)

(set z 3)

global environment:
globals

vars
vals 3

z

2
 1

y
 x

Desire for efficient representation, allocation, &
deallocation of environments often drives language
design (e.g., call stack—Exercise 13)

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 40

Meanings, part II: expressions

Expressions evaluated w.r.t. environment
(composition of formal, global, function
environments)

Heart of the interpreter
� structural recursion on Exps
� environment provides meanings of names

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 41

How do we explain evaluation?

Answer three questions:
1. What are the expressions?
2. What are the values?
3. What are the rules for turning expressions into

values?

Combined: operational semantics

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 42

Operational semantics

Specify executions of programs on an abstract
machine

Typical uses
� Very concise and precise language definition
� Direct guide to implementor
� Prove things like “well-typed programs don’t go

wrong”

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 43

Operational Semantics

Loosely speaking, an interpreter

More precisely, formal rules for interpretation
� Set of expressions, also called terms
� Set of values
� Full state of abstract machine

(e.g.,
�
e � ξ � φ � ρ � , � expression + 3 environments)

� Well specified initial state
� Transition rules for the abstract machine

– Good programs end in an accepting state
– Bad programs get stuck (� “go wrong”)

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 44

Operational semantics for Impcore

You’ve seen expressions: ASTs

All values are integers.

State
�
e � ξ � φ � ρ � is

e Expression being evaluated

ξ Values of global variables

φ Definitions of functions

ρ Values of formal parameters

Rules form a proof system for judgment:�
e � ξ � φ � ρ ��� �

v � ξ � � φ � ρ ���
c

�
Copyright 2000 Norman Ramsey. All Rights Reserved. 45

Impcore semantics: Literals

�
LITERAL � v � � ξ � φ � ρ ��� �

v � ξ � φ � ρ � (LITERAL)

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 46

Impcore semantics: Variables

Parameters hide global variables.

x � domρ�
VAR � x � � ξ � φ � ρ ��� �

ρ � x � � ξ � φ � ρ � (FORMALVAR)

x �� domρ x � domξ�
VAR � x � � ξ � φ � ρ ��� �

ξ � x � � ξ � φ � ρ � (GLOBALVAR)

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 47

Impcore semantics: Assignment

x � domρ
�
e � ξ � φ � ρ ��� �

v � ξ � � φ � ρ ����
SET � x � e � � ξ � φ � ρ ��� �

v � ξ � � φ � ρ � �
x �� v � �

(FORMALASSIGN)

x �� domρ x � domξ
�
e � ξ � φ � ρ ��� �

v � ξ � � φ � ρ � ��
SET � x � e � � ξ � φ � ρ ��� �

v � ξ � �
x �� v � � φ � ρ �

(GLOBALASSIGN)

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 48

Evaluation code

Value eval(Exp *e, ξ, φ, ρ) {

switch(e->ty) {

case LITERAL: return e->u.literal;

case VAR: ... /* look up in ρ and ξ */

case SET: ... /* modify ρ or ξ */

case IFX: ...

case WHILEX: ...

case BEGIN: ...

case APPLY: f = fetchfun(e->u.apply.name, φ);
... /* user fun or primitive */

}

}

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 49

Evaluation cases

VAR find binding for variable and use value

SET rebind variable in formals or globals

IFX (recursively) evaluate condition, then t or f

WHILEX (recursively) evaluate condition, body

BEGIN (recursively) evaluate each Exp of body

APPLY look up function in functions

built-in PRIMITIVE — do by cases
USERDEF function —

use arg values to build formals env
recursive eval using fun body

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 50

Evaluation — Variables

To evaluate x, find binding ρ � x � , get value

Conceptually, one environment, composed of
formals+globals

Composition implemented in eval, not in Env type:

case VAR:

if (isvalbound(e->u.var, formals))

return fetchval(e->u.var, formals);

else if (isvalbound(e->u.var, globals))

return fetchval(e->u.var, globals);

else

error("unbound variable %n", e->u.var);

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 51

Assignment

(set x e)

SET

x

name

...

exp

Means change ρ � x � :
change parameter or
change global

case SET: {

Value v = eval(e->u.set.exp,globals,functions,formals);

if(isvalbound(e->u.set.name, formals))

bindval(e->u.set.name, v, formals);

else if(isvalbound(e->u.set.name, globals))

bindval(e->u.set.name, v, globals);

else

error("set: unbound variable %n", e->u.set.name);

return v; }

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 52

Evaluation — Application

1. Find function in old environment

f = fetchfun(e->u.apply.name, functions);

2. Evaluate actuals to get list of values (also in old ρ)

vl = evallist(e->u.apply.arglist, globals, functions, formals);

N.B. actuals evaluated in the current environment

3. Make new env, binding formals to actuals

new_formals = mkValenv(f.u.userdef.formals, vl);

4. Evaluate body in new environment

return eval(f.u.userdef.body, globals, functions, new_formals);

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 53

Application — binding parameters

Actuals evaluated in the current environment

Result is Valuelist — “half of an environment”
(reason why pair of lists, not list of pairs)

Formals are bound to actuals in a new environment
mkValenv builds an environment from two
lists

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 54

Application semantics

φ � f � � USER � � x1 � ����� � xn � � e ��
e1 � ξ0 � φ � ρ0 ���

�
v1 � ξ1 � φ � ρ1 �

...�
en � ξn � 1 � φ � ρn � 1 ���

�
vn � ξn � φ � ρn ��

e � ξn � φ � �
x1 �� v1 � ����� � xn �� vn � ��� �

v � ξ � � φ � ρ � ��
APPLY � f � e1 � ����� � en � � ξ0 � φ � ρ0 ���

�
v � ξ � � φ � ρn �

(APPLYUSER)

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 55

Application Example

(
d
e
f
i
n
e

m
o
d

(
m

n
)

(
-

m
(
*

(
/

m
n
)

n
)
)
)

-
 A
P

P
L

Y

 E
xp

lis
t

m

V
A

R

*
 A
P

P
L

Y

 E
xp

lis
t

/
 A
P

P
L

Y

n

V
A

R

 E
xp

lis
t

m

V
A

R

n

V
A

R

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 56

Things to notice about Impcore

Lots of environments:
global variables
functions
parameters
local variables?

More environments � more name spaces
� more complexity

Typical of many programming languages.

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 57

Questions to remember

Abstract syntax: what are the terms?

Values: what do terms evaluate to?

Environments: what can names stand for?

Evaluation rules: how to evaluate terms?

Initial basis (primitives+): what’s built in?

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 58

