
Theory of Programming Languages

Theory

Language Design

Functional
Programming

Programming
Methodology Implementation

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 1

Our view of theory

Precise answer to “what does this program mean?”
(a guide to implementors)
� lambda calculus
� type theory
� partial orders and lattices
� denotational semantics

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 2

The lambda calculus

World’s simplest programming language:
variables, abstraction, application

exp � var�
λ var . exp�
exp exp

Typically M � N ������� stand for exps (λ-terms)
x � y � z ������� stand for variables

Application associates to left, binds tighter than
abstraction (parenthesize as needed)

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 3

Lambda calculus, continued

Sometimes we will add constants like +, 1, 2:

add2 � λx ��	 x2
add2 
 � λx ��	 2x
add2 
 
 � 	 2
revapply � λx � λy � yx

Amazingly, as powerful as any known programming
language

even without constants!

Ideal vehicle for
� proving theorems
� experimenting with features

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 4

Evaluating lambda-terms

Use beta-reduction for applications,
delta-reduction for constants

�
λx � λy � yx � � 	 3 4 � � λx ��	 x 2 � β

�
λy � y � 	 3 4 ��� � λx ��	 x 2 � β

�
λx ��	 x 2 � � 	 3 4 � β


	 � 	 3 4 � 2 δ


	 7 2 δ

9

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 5

Substitution

Heart of the lambda calculus
and difficult to implement correctly!

�
M � x � x � M�
M � x � y � y�
M � x � YZ � ���

M � x � Y � ��� M � x � Z ��
M � x � λx � Y � λx � Y�
M � x � λy � Z � λy � � M � x � Z

if x not free in Z or y not free in M�
M � x � λy � Z � λw � � M � x � ��� w � y � Z �

where w not free in Z or M

Last transformation is renaming of bound variables

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 6



Bound-variable capture

If you don’t rename bound variables, watch out!
�
z � x � � λy � yx � � λy � yz
�
yz � x � � λy � yx � ?� λy � yyz not likely—“captured” y�
yz � x � � λy � yx � � λw � wyz

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 7

Conversion

Alpha-conversion (rename bound variable)

λx � Z α
 λy � � y � x � Z � provided y not free in Z

Beta-conversion (the serious evaluation rule)

�
λx � M � N β
 �

N � x � M
Eta-conversion:

λx � Mx
η
 M � provided x not free in M

Conversion can apply to whole term or a subterm

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 8

The really important theorem

Two terms that convert are in some sense
equivalent because of

Church-Rosser Theorem
if A 
 B and A 
 C

there exists D s.t. B 
 �
D and C 
 �

D

Real theorists prove this theorem. . .

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 9

Normal Forms

If there is no B such that A 
 B, A is in normal form
(typically we ignore alpha-conversion)

So called because of Church-Rosser.

Corollary:
if A 
 �

B, B in normal form, and
A 
 �

C, C in normal form

then B and C are identical
(up to renaming of bound variables)

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 10

How to get a normal form

Normalization theorem:
If there is a normal form, can get to it by taking

“leftmost, outermost redex”
“normal order of evaluation”� to guarantee normal form� not the “normal way of doing things”

Danger of infinite loops:

�
λx � xx � � λx � xx � β
 �

λx � xx � � λx � xx �
But �

λx � λy � y � ��� λx � xx � � λx � xx ��� β
 λy � y
Think “bodies before arguments”

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 11

Computing with the lambda calculus

We convince ourselves we can write programs
Booleans:

������� � λx � λy � x
�
	���
 � � λx � λy � y
���

M
�������

N
� ��
 �

P � MNP

Products (tuples, records, structs):
� 	�� � � λx � λy � λf � fxy
��
 � � λp � p �

λx � λy � x �

 ��� � λp � p �

λx � λy � y �

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 12



Sums (discriminated unions)

ML has strong native support:

datatype (’a, ’b) union = A of ’a | B of ’b

Scheme: as in C, a record with explicit tags

; let union be pair of tag and value

(set A (lambda (x) (cons ’a x)))

(set B (lambda (x) (cons ’b x)))

Lambda-calculus: functions!

A � λa � λf � λg � fa
B � λb � λf � λg � gb

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 13

Getting a value out of a sum

Must be prepared for two cases; ML has it built in
case X of A a => M | B b => N

where a is free in M, b is free in N

Scheme requires explicit tag and extract:
(if (= (car X) ’a)

(let ((a (cdr X))) M)
(let ((b (cdr X))) N))

Lambda calculus—supply function for each case
� 	�
 � � � �

λa � M � � λb � N � X
where � 	�
 � � � � λleft � λright � λx � x left right

A � λa � λf � λg � fa
B � λb � λf � λg � gb

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 14

Simulating S-expressions

Sum of nil or product.
����� � λf � λg � f �
���	��
 � λa � λd � λf � λg � gad
����
 � λp � p � �

λa � λd � a �
����
 � λp � p � �

λa � λd � d �
������� ? � λp � p �

λx � true � � λa � λd � false �
� � �

λx � xx � � λx � xx �
Relies on normal-order evaluation
(won’t work in Scheme)

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 15

Church Numerals

Encoding natural numbers as lambda-terms
� � ��� � λf � λx � x� ��� � λf � λx � f x
����� � λf � λx � f � f x �
� � λf � λx � f

�
n � x


 � ��� � λn � λf � λx � f � n f x �
� � � 
 � λn � λm � n 
 � ��� m
� ��� � 
 � λn � λm � n � � � � 
 m � � � ���

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 16

Church Numerals in Scheme

(val zero (lambda (f) (lambda (x) x)))
(val succ (lambda (n) (lambda (f)

(lambda (x) (f ((n f) x))))))
(val three (succ (succ (succ zero))))
(val four (succ three))
(val plus (lambda (n) (lambda (m)

((n succ) m))))
(val times (lambda (n) (lambda (m)

((n (plus m)) zero))))
(val to-int (lambda (n)

((n (lambda (x) (+ x 1))) 0)))
-> (to-int three)
3
-> (to-int ((times three) four))
12

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 17

Theoretical foundation — Partial orders

A partial order is a relation that is
reflexive x � x
transitive if x � y � y � z then x � z
antisymmetric if x � y � y � x, then x � y

and there may be incomparable x and y: neither x � y nor y � x.

Many, many examples:
 set inclusion on sets (subset relation)
 “approximates” on partial functions (“refinement order”)

f � g if f and g agree where both are defined, and g is
defined everywhere f is (set inclusion on domains)

 “is an instance of” relation on types

Notations abound: !"�$#%�$&%�$�%� ∝ �$'$'$'

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 18



Semantic Domains & Lattices

Every value space represented by a semantic
“domain”

Elementary domains: Int, Bool
pairs of domains (see text)

Domains are lattices: sets with special properties.

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 19

Domain properties

Every domain has � or “undefined” element:
can represent non-terminating computation,
or computation that goes wrong

Partial order “approximation”
� D

�
x for every x in domain D

1 2 3 4 ...

PSfrag replacements

�������
Approximation means

“is less defined than”
“terminates less often than”

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 20

Recursive functions

Lattices provide a model for functions
Functions as values:

Value must include Value 
 Value
What is Value 
 Value?
Can’t be functions from Value to Value

(counting argument shows too many!)

Must cut down the number of functions somehow
choose those that are not “over-defined”

Technical analysis, but intuitive result!

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 21

Approximating functions

Given lattice S, what is domain of functions S 
 S?

Make all functions total
map them to � where not otherwise defined

Define
� 
 on functions from S to S by

f
� 
 g iff f

�
x � � g

�
x ��� x 	 S

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 22

Example of approximation

In λ-calculus, let

u � λn � � λx � xx � � λx � xx �
and consider

g � λf � λn � if n � 0 then 1 else n 
 f
�
n � 1 �

u �
��� (nowhere defined, maps all to � )
g
�
u � �
� 0 �
 1 �

g
�
g
�
u ��� �
� 0 �
 1 � 1 �
 1 �

g
�
g
�
g
�
u ����� �
� 0 �
 1 � 1 �
 1 � 2 �
 2 �

g
�
g
�
g
�
g
�
u ������� �
� 0 �
 1 � 1 �
 1 � 2 �
 2 � 3 �
 6 �

and so on.

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 23

Approximation, continued

Note that

u
�

g
�
u � � g

�
g
�
u ��� � ����� out to infinity

We can define the factorial function by
�
	 � � � λn � � 
 � ��� n � g u n

� 
 � ��� n � g u is a good enough approximation to
factorial

as long as arguments are no larger than n

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 24



Approximating functions, continued

Recall g � λf � λn � if n � 0 then 1 else n 
 f
�
n � 1 �

Is there a function F such that g F � F?
called a “fixed point” of g

If so, then F is the factorial function
Proof by induction:

g F 0 � 1 (true for any F)
g F n � if n � 0 then 1 else n 
 F

�
n � 1 �

� n 
 F
�
n � 1 �

� n 
 �
	 � � � � � 	 � � n � 1 � (induction hypothesis)
� �
	 � ����� ��	�� n

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 25

Finding a fixed point

We can find a fixed point for any function.

Let

Y � λf � � λx � f � xx ��� � λx � f � xx ���
Y g � �

λx � g �
xx ��� � λx � g �

xx ���
and by beta-conversion

Y g � g
���

λx � g �
xx ��� � λx � g �

xx ���
Y g � g

�
Y g �

so
F � Y g

Actually, for any h, Y h � h
�
Y h �

Y is a “fixed-point combinator”

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 26

Using fixedpoint to implement fixedpoint

µScheme val is inherently recursive (Y built in)

-> (val fix (lambda (f) (lambda (x) ((f (fix f)) x))))

-> (val g (lambda (fact)

(lambda (n)

(if (= n 0) 1 (* n (fact (- n 1)))))))

-> (val f (fix g))

-> (f 0)

1

-> (f 5)

120

-> (f 6)

720

fix useful in interpreters

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 27

Syntactic sugar for the lambda calculus
�
M � N � def� λf � f M N

λ
�
x � y � � M def� λp � p �

λx � λy � M �
let v � M in N

def� �
λv � N � M

letrec v � M in N
def� �

λv � N � � Y �
λv � M ���

0 � 1 � 2 ������� def� λf � λx � x � λf � λx � fx � λf � λx � f � fx � �����
M 	 N

def� �
λx � λy � x 
 � ��� y � M N

� ����� def� λx � λy � x
�
	 ��
 � def� λx � λy � y
if P then M else N

def� PMN

also products and sums (union, datatype) as above

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 28

Typed lambda calculus

First-order typed lambda calculus:
exp � var�

λ var : type . exp�
exp exp�
const

type � base-type (e.g., int)�
type � type

Type rules:
� type of var is the type introduced at binding
� type of M1M2, if M1 : τ1


 τ2 and M2 : τ1, is τ2� type of λv : τ1 � M, if M has type τ2, is τ1

 τ2� type of const is some basic type

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 29

How to write type rules?

Formal is better then informal:
� concise
� precise
� could use to write a type-checker
� could use to prove soundness

well-typed programs won’t “go wrong”

Cost: effort learning to read type rules

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 30



Formalizing type judgments

Similar to presentation in Cardelli

(Env φ) (Env x)

φ
��� Γ

�
A x �� Γ

Γ � x : A
��� Well-formed

environments

(Type Const) (Type Arrow)

Γ
���

K � Basic
Γ
�

K
Γ
�

A Γ
�

B
Γ
�

A � B

Const formation,
arrow formation

(Val x) (Val Fun)

Γ � x : A � Γ � ���
Γ � x : A � Γ � � x : A

Γ � x : A
�

M : B
Γ
�

λx : A 'M : A � B

Variables, arrow
introduction

(Val App)

Γ
�

M : A � B Γ
�

N : A
Γ
�

MN : B

Arrow elimination

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 31

Product types

(Type Product) (Val Pair)
Γ � A1 Γ � A2

Γ � A1 
 A2

Γ � M1 : A1 Γ � M2 : A2

Γ � �
M1 � M2 � : A1 
 A2

(Val Fst) (Val Snd)
Γ � M : A1 
 A2

Γ � fst M : A1

Γ � M : A1 
 A2

Γ � snd M : A2

(Val With)
Γ � M : A1 
 A2 Γ � x1 : A1 � x2 : A2 � N : B

Γ � let val (x1, x2) = M in N end : B

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 32

Sum types

Discriminated union:

(Type Sum)
Γ � A1 Γ � A2

Γ � A1 	 A2

(Val inLeft) (Val inRight)
Γ � M1 : A1 Γ � A2

Γ � inLeftA2
M1 : A1 	 A2

Γ � A1 Γ � M2 : A2

Γ � inRightA1
M2 : A1 	 A2

(Val Case)
Γ � M : A1 	 A2 Γ � x1 : A1 � N1 : B Γ � x2 : A2 � N2 : B

Γ � � ��� 
��
B M �
	 x1 : A1 � N1 � x2 : A2 � N2 � : B

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 33

Second-order typed lambda-calculus
exp �

var variable�
λ var : type . exp functional abstraction�
exp exp application�
const constant�
Λ α . exp type abstraction�
exp type type application

type �
tycon type constructor: int, bool, . . .�
tyvar type variable: α, β, . . .� 


α ' type�
type � type

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 34

Second-order type rules

Environments, type formation

(Env φ) (Env x) (Env α)

φ ���
Γ � A x �	 Γ

Γ � x : A ���
Γ ��� α �	 Γ

Γ � α ���
(Type α) (Type Arrow) (Type Forall)

Γ � α � Γ 
 ���
Γ � α � Γ 
 � α

Γ � A Γ � B
Γ � A 
 B

Γ � α � A
Γ � � α � A

x term variable α type variable
M � N terms A � B types

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 35

Second-order type rules, continued

Introduction and elimination

(Val x) (Val Fun)

Γ � x : A � Γ 
����
Γ � x : A � Γ 
 � x : A

Γ � x : A � M : B
Γ � λx : A � M : A 
 B

(Val App)
Γ � M : A 
 B Γ � N : A

Γ � MN : B

(Val Fun2) (Val App2)
Γ � α � M : A

Γ � Λα � M : � α � A
Γ � M : � α � A Γ � B

Γ � MB :
�
B � α � A

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 36



Second-order type examples
� � ��� � Λα � λf : α 
 α � λx : α � x : � α � � α 
 α � 
 α 
 α
������� � � Λα � λf : α 
 α � λx : α � f � f � fx ���

: � α � � α 
 α � 
 α 
 α

 � ��� � λn : � α � � α 
 α � 
 �

α 
 α � �
Λα � λf : α 
 α � λx : α � f � nαfx �

:
� � α � � α 
 α � 
 �

α 
 α � �
 � � α � � α 
 α � 
 �
α 
 α � �

	 � � � λn : � α � � α 
 α � 
 �
α 
 α � �

λm : � α � � α 
 α � 
 �
α 
 α � �

nαf
� � α � � α 
 α � 
 �

α 
 α ��� 
 � ��� m wrong!
:
� � α � � α 
 α � 
 �

α 
 α � �
 � � α � � α 
 α � 
 �
α 
 α � �
 � � α � � α 
 α � 
 �
α 
 α � �

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 37

Evaluating typed calculi

Theorem (“Erasure”):
Can evaluate typed λ-calculus (1st- and
2nd-order) by erasing all types and Λ’s, and
evaluating as for untyped λ-calculus

Your ML interpreter will:
� infer types and Λ’s for all variables and functions
� discard types, use eval on untyped syntax

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 38

The ML type system

A subset of 2nd-order λ-calculus
Λ (type abstraction) permitted only at certain
points

In particular:
� type abstraction always with functional

abstraction:
Λα � λx : τ � � �����

� App2 always with App

Advantage:
no notation—type abstractions, apps are implicit

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 39

ML examples

val id = fn x => x � Λα � λx : α � x
val succ’ = id succ

� � � � � α � ��� α 
 α � 
 �
α 
 α ��� 
 ���

α 
 α � 
 �
α 
 α ����� 
������

c
�

Copyright 2000 Norman Ramsey. All Rights Reserved. 40


