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Writing an infinite loop

Yesterday we showed how to write an infinite loop in AFun!Exp. To recall, our
first attempt was:

(let (f (fun (n) (f (n))))
(f (7)))

This expression fails because it isn’t closed. We can try to fix it by binding an
f above:

(let (f 0)
(let (f (fun (n) (f (n))))
(f (7))))

But the f inside the function is still bound to 0, so we get an error upon applying
0 to 7. Finally, we decided to mutate the f:

(let (f 0)
[(set f (fun (n) (f (n))))
(7)])

Now the f in the function refers to a box, but the contents of that box are set
to the function. So the recursion works.

Let’s look at the example a bit more carefully:

1. The initial environment is:

E0 ≡ (fresh-sub)

2. The let expression creates a new environment that binds f to 0 in its
body:

E1 ≡ (new-sub ’f (numV 0) E0)

3. When the fun is evaluated, a closure is created which captures the envi-
ronment E1:

(funV ’n 〈...〉 E1)
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4. The set expression then changes E1, so we get the following equivalence:

E1 ≡ (new-sub ’f (funV ’n 〈...〉 E1) E0)

Looking at this last equality, we see that we need an environment that refers
to itself. If we let:

P (E) = (new-sub ’f (funV ’n 〈...〉 E) E0)

the equation for E1 can be rewritten as:

E1 = P (E1)

E1 is called the fixed point of P .

Fixed point digression

It’s not obvious that a function has a unique fixed point. Consider these three
functions:

1. f(x) = x has infinitely many fixed points.

2. f(x) = 0 has exactly 1 fixed point.

3. f(x) = x + 1 has no fixed points.

However, P does have a fixed point.

Adding recursive bindings to our language

We often use recursive functions when writing programs, so we’ll add a construct
rec to our language1 to explicitly support recursion:

L ::= . . .
| (rec 〈id〉 〈L〉 〈L〉)

For example, we can write an infinite loop as follows:

(rec f (fun (x) (f (x)))
(f (17)))

The variable f is bound to the function, and the environment in the function’s
closure includes this binding.

We add a recE variant to the datatype for the abstract syntax tree:

(define-datatype AFunRecExp AFunRecExp?
[varE (v symbol?)]
1Similar to Scheme’s letrec.
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[numE (n number?)]
[addE (lhs AFunRecExp?)

(rhs AFunRecExp?)]
[funE (param symbol?)

(body AFunRecExp?)]
[appE (fun AFunRecExp? )

(arg AFunRecExp? )]
[recE (var symbol?)

(fun AFunRecExp? )
(body AFunRecExp?)])

Now we need to write the recE case in the interpreter:

[recE (var fun body) . . . ]

Remember our discussion above—we want to interpret body in the environment
given by the fixed point of P . Let’s suppose we have a function fix-env which
computes the desired fixed point:

[recE (var fun body) (let ([P . . . ])
(interp body (fix-env P)))]

Next we fill in P , which is the environment transformer we defined above:

[recE (var fun body) (let ([P (lambda (env)
(new-sub var

(funV (get-funE-param fun)
(get-funE-body fun)
env)

d))])
(interp body (fix-env P)))]

We still have to write the function fix-env which computes the fixed point of
the environment transformer P . If we use the function representation for envi-
ronments, we can use Scheme’s letrec to define fix-env :

(define (fix-env P)
(letrec ([rec-env (P (lambda (id)

(get-sub id rec-env)))])
rec-env))

How does fix-env work? We define a new environment rec-env which contains
the binding for the recursive function. The environment in the recursive func-
tion’s closure is (lambda (id) (get-sub id rec-env)); in other words, it just looks
up the identifier in rec-env . Thus, the recursive function can refer to itself.

Another approach to writing fix-env is to use mutation. We can create a
dummy value as the closure’s environment, and then apply the transformer P
to get the environment in which to evaluate body (call it rec-env). Then we
mutate the dummy value to be rec-env , so the function closure’s environment
contains the binding for the function. The code is:
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(define (fix-env F )
(let∗ ([set-env (box (fresh-sub))]

[rec-env (F set-env)])
(set-box! set-env rec-env)
rec-env))

(The let∗ expression is just shorthand for nested let expressions.) We also
have to modify two other parts of the interpreter because we use boxes to
implement mutation: environments are boxed when closures are created in funE ,
and environments are unboxed when calling interp in apply-fun.
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