
Automating the CPS Transformation

sk and dbtucker

November 10, 2000

In a previous lecture, we claimed that we can automatically convert any
program to continuation-passing style. Today we will write a function that
turns any expression into CPS.

Alternate representation of CPS

For this exercise, we’ll find it convenient to use an alternate representation of
CPS. Instead of adding a k parameter to each function, we’ll have the function
return a closure which accepts k . For example, we can write factorial as follows:

(define (!/k n)
(λ (k)

(if (= n 0)
(k 1)
((!/k (− n 1))
(λ (v) (k (∗ n v)))))))

The recursive call to !/k is curried—the function !/k is applied to (− n 1), and
the result is applied to the continuation. The interface function must also follow
this convention:

(define (! n)
((!/k n)
(λ (x ) x )))

Automatic conversion to CPS

The cps function consumes an expression in our language and produces the CPS
version of that expression. Thus its type is:

cps : AFunExp → AFunExp

Given some expression e in our language, the result of (cps e) will be an AFu-
nExp function that takes a context k as its parameter. The context k will be
applied to the value of the expression e.

Here’s the shell of the function:

1



(define (cps l)
(cases AFunExp l

[numE (n) . . . ]
[varE (v) . . . ]
[addE (le re) . . . ]
[funE (param body) . . . ]
[appE (fe ae) . . . ]))

Based on our discussion above, the numE case is easy; we return a function
which accepts a continuation and applies it to the number:

[numE (n) (funE ’k (appE (varE ’k) (numE n)))]

For the sake of clarity, we’ll rewrite this expression as the following equivalent
expression using quasiquote and unquote1:

[numE (n) (parse ‘(fun (k) (k ,n)))]

The varE case is similar—we apply the continuation to the variable:

[varE (v) (parse ‘(fun (k) (k ,v)))]

You might wonder why we aren’t looking up the variable in the environment.
Remember, we are not evaluating the program; we are translating it to another
(equivalent) program which will be evaluated by the interpreter. When the
interpreter runs on the CPS version of the program, it will perform the necessary
variable lookups.

The funE case should also be similar, since functions are values. The one
difference is that we must convert the body of the function to CPS:

[funE (param body) (parse ‘(fun (k)
(k (fun (,param)

,(cps body)))))]

Now let’s look at the addE case. First of all, we know the result must be a
function of k. Second, since le and re are arbitrary expressions, we have to call
cps on them. The result of (cps le) accepts a continuation k and applies k to
the value of le. If we write:

[addE (le re) (parse ‘(fun (k)
(,(cps le) (fun (lv) . . . ))))]

then lv is bound to the value of le in the ellipsis. We can play the same trick
with re:

[addE (le re) (parse ‘(fun (k)
(,(cps le) (fun (lv)

(,(cps re) (fun (rv) . . . ))))))]

1See the Appendix if you’ve never used quasiquote and unquote

2



Now lv is the value of the left expression, and rv is the value of the right ex-
pression. The function returned by cps is required to take a continuation k and
apply it to the value of the expression. The value of the addE expression is
(+ lv rv), so the final version is as follows:

[addE (le re) (parse ‘(fun (k)
(,(cps le) (fun (lv)

(,(cps re) (fun (rv)
(k (+ lv rv))))))))]

Is the appE case exactly the same as addE?

[appE (fe ae) (parse ‘(fun (k)
(,(cps fe) (fun (fv)

(,(cps ae) (fun (av)
(k (fv av))))))))]

No—this is incorrect. What will be the result of evaluating (fv av)? It will be
the CPS version of the function’s body, with the parameter bound to the value
of the argument.

Exercise: Convince yourself of the above statement.

We want to evaluate the body with the continuation we were given; therefore,
we apply the result of (fv av) to k:

[appE (fe ae) (parse ‘(fun (k)
(,(cps fe) (fun (fv)

(,(cps ae) (fun (av)
((fv av) k)))))))]

The final version of the cps function looks like this:

(define (cps l)
(cases AFunExp l

[numE (n) (parse ‘(fun (k) (k ,n)))]
[varE (v) (parse ‘(fun (k) (k ,v)))]
[addE (le re) (parse ‘(fun (k)

(,(cps le) (fun (lv)
(,(cps re) (fun (rv)

(k (+ lv rv))))))))]
[funE (param body) (parse ‘(fun (k)

(k (fun (,param)
,(cps body)))))]

[appE (fe ae) (parse ‘(fun (k)
(,(cps fe) (fun (fv)

(,(cps ae) (fun (av)
((fv av) k)))))))]))

3



Appendix

Here’s a brief description of quasiquote and unquote. Say you want to write a
function that takes a number x , and returns a list whose third element is the
square of x . You could write:

(define (make-list x )
(cons 1 (cons 2 (cons (∗ x x ) (cons 4 (cons 5 empty))))))

> (make-list 10)
(1 2 100 4 5)

We would like to use quote notation to make lists, but the (∗ x x ) gets treated
as a list of symbols:

(define (make-list x )
’(1 2 (∗ x x) 4 5))

> (make-list 10)
(1 2 (∗ x x ) 4 5)

The solution is to use quasiquote and unquote. You create the list using a
quasiquote. Every element is treated as a symbol—except that if you unquote
the element, is is evaluated. We write quasiquote with a back tick (‘) and
unquote with a comma (,):

(define (make-list x )
‘(1 2 ,(∗ x x ) 4 5))

> (make-list 10)
(1 2 100 4 5)

4


