
Today’s Lecture Notes for cs173

sk and dbtucker

October 20, 2000

Polymorphism

So far we’ve only been working with number lists. What other types of lists
might we want? Surely a list of bools would be useful. How about a list
of functions? Certainly—we can use it to represent contexts, a list of hash
functions, or a jump table for bytecodes (in fact, a vector of functions would
make more sense for a jump table).

We want to use lists of any type, and we want to write functions over these
lists that don’t restrict the element type ahead of time. So, we need a type like
list(T) and vector(T), where T can be any type. How do we program in
such a language?

We’ll write Scheme-like code, and assume that the language is statically type
checked, and allows only top-level datatype definitions. In Scheme, we can write
map as follows:

(define map
(λ (f L)

(cond
[(empty? L) empty]
[else (cons (f (first L))

(map f (rest L)))])))

Since we’re statically type checking this language, we need to specify the types
of the function parameters f and L. The parameter L is a list of elements of
some type T , and f consumes a value of this type T and returns a value of some
other type U :

(define map
(λ (f : (T → U ) L : list(T ))

(cond
[(empty? L) empty]
[else (cons (f (first L))

(map f (rest L)))])))

The list returned by the function contains values produced by f , so its type is
list(U ). So the type of map looks something like this:

map : (T → U)× list(T ) → list(U)

1



The problem is that we haven’t said what T and U are. We really mean that
for any type T and any type U , map can be given a type of that form:

map : ∀T, U. (T → U)× list(T ) → list(U)

What’s the difference between the type nlist and the type list(num)? The
former type hardcodes the fact that its elements are numbers, while the latter
parameterizes the type of its elements. So list(T ) is a type which takes a
parameter, and the paremeter is itself a type.

How can we type check a function like map, that uses types parameterized
over T and U , when we don’t know what T and U are? Let’s apply a standard
CS technique, namely, if we aren’t sure of a value, we can parameterize it and
supply it later. In this case, we make T and U parameters to map:

(define map
(λ (T U )

(λ (f : (T → U ) L : list(T ))
(cond

[(empty? L) empty]
[else (cons (f (first L))

(map f (rest L)))])))

This function won’t parse, since T and U aren’t annotated with types. Fur-
thermore, even if it did parse, it isn’t legal because types (e.g., num, bool) are
not values in the language. We’ll address these problems later, and continue
with the example for now.

The function map takes types T and U and returns a function which operates
on lists of the specified types. For example, we could use map with types num
and bool :

({map num bool}
(λ (x : num) (x > 0))
(list 0 1 2 3))

Note: we’ll use ‘{’ and ‘}’ to mark applications of functions to types.
The above version of map isn’t right—in the recursive call to map, it doesn’t

pass the types as arguments. We can fix that problem by simply passing T and
U along:

(define map
(λ (T U )

(λ (f : (T → U ) L : list(T ))
(cond

[(empty? L) empty]
[else (cons (f (first L))

({map T U} f (rest L)))])))

Now every time we make a recursive call, the evaluation of {map T U} creates
a new closure. If we use map on a list with 20,000 items, we’ll create 20,000
closures, which is tremendously inefficient!

2



We have another problem—what is the type of cons? It takes an element
of type T and a list of type list(T ), then returns a list of type list(T ). So cons
is parameterized over the type T just as map is. In fact, all the constructors,
predicates, and selectors created when we defined the list(T ) datatype are pa-
rameterized over T . So we need to instantiate each of those functions with a
particular type; for example, {empty? T} is a predicate that only works on lists
of type T . Now map looks like this:

(define map
(λ (T U )

(λ (f : (T → U ) L : list(T ))
(cond

[({empty? T} L) {empty U}]
[else ({cons U} (f ({first T} L))

({map T U} f ({rest T} L)))])))

This treatment of parameterized types raises several questions:

1. Are types values?

2. Since we can create functions over types, and apply functions to types,
can’t we just compute everything with types?

3. Since T and U are specified as parameters to map, and all function pa-
rameters must be annotated with their types, what are the types of T and
U themselves?

We don’t want types to be values in our language, since it breaks the dis-
tinction we have made between a static universe of types, and a dynamic one of
values. Once we conflate the two, what good do types do us? If we can involve
them in computations, then type checking could become undecidable, in which
case they become useless.

The solution is to evaluate the code in two phases. In the first phase, we do
all the necessary computations over types. To mark this difference, we denote
functions over types using Λ:

(define map
(Λ (T U )

(λ (f : (T → U ) L : list(T ))
(cond

[({empty? T} L) {empty U}]
[else ({cons U} (f ({first T} L))

({map T U} f ({rest T} L)))])))

The first phase evaluates the functions (denoted by Λ) and applications (denoted
by ‘{’ and ‘}’) which perform type elaboration. The second phase evaluates the
resulting program.

Now that we evaluate the function in two phases, how many closures do we
create for map? Previously, we had to create 20,000 when operating on a list of

3



length 20,000, since we created a new closure on every recursive call. Now, we
only create two, because all the type expansion is done in the first phase.

We really have two different languages here, one for type expansion, and one
for the regular evaluation. How do we prevent the evaluation of the type expan-
sion language from diverging? One solution is to impose a second type system
on top of that language, where this second type system is strongly normalizing.

The kind of polymorphism we’ve seen here is called parametric polymor-
phism. It seems to be a real pain to program in this language, since we have to
explicitly write down a type every time we use a function. Who would want to
program in such a language? In fact, many people do—this is effectively what
C++ template programmers write, especially when they use the STL. (They
don’t always realize this, since many of these type abstractions and applications
are hidden in the STL routines, and anyway the syntaxes—function application
vs. template specialization—are quite different.)

4


