
Today’s Lecture Notes for cs173

sk and dbtucker

September 29, 2000

Quote of the Day: “To compute is human, to continue divine.”—anonymous

Contexts

Consider the following computation in Scheme:

(+ (* 2 3) (- 4 (+ 5 6)))

For each step of computation, let’s look at two parts:

1. the expression currently under evaluation

2. the computation that still needs to be done. This expression depends on
the result of the current computation, so we’ll represent that hole with a
�.

Here is how the expression evaluates:

(* 2 3) (+ � (- 4 (+ 5 6)))
(+ 5 6) (+ 6 (- 4 �))
(- 4 11) (+ 6 �)

-1 �

The evaluations that remain to be done (i.e. the right-hand side above)
are called contexts. We can turn the contexts into legal Scheme expressions by
abstracting the �’s:

(* 2 3) (λ (�) (+ � (- 4 (+ 5 6))))
(+ 5 6) (λ (�) (+ 6 (- 4 �)))
(- 4 11) (λ (�) (+ 6 �))

-1 (λ (�) �)

Note that when the computation ends, the context is the identity function.

1



Magic

Now we’ll conjure up a little magic, represented by the Official International
Symbol for Magic: ^. Here are some expressions with magical operators. Can
you figure out what’s going on?

expression result
(+ (*̂ 2 3) 4) 6
(- 1 (+̂ (* 2 3) 4) 5) 10
(+ (*̂ 2 3) (- 4 (*̂ 5 6))) 6
(+ (* 2 3) (-̂ 4 (*̂ 5 6))) 30

We’ll call these magical operators (e.g. +̂) escapers—they just evaluate the
current expression, but then escape for the remaining computation. In other
words, an escaper is a procedure that tosses away its context.

Let the games begin...

Let’s try something easier. We can write a function that computes the product
of a list of numbers:

(define (prod L)
(cond
[(empty? L) 1]
[(cons? L) (* (first L) (prod (rest L)))]))

No problem there. What happens when we evaluate this expression?

(prod ’(1 2 3 0 4 5 6))

Of course it evaluates to 0, but the Scheme interpreter has to do 7 multiplications
to figure that out. We shouldn’t have to do any multiplications if there’s a 0 in
the list. Can we modify our code to do so?

(define (prod L)
(cond
[(empty? L) 1]
[(cons? L) (cond

[(zero? (first L)) 0]
[else (* (first L) (prod (rest L)))])]))

Now how many multiplications do we perform? When we evaluate the 0, the
context is (λ (�) (* 1 (* 2 (* 3 �)))), so we still end up doing 3 multi-
plications.

If only we had one of those escapers, we could avoid those multiplications
too. We want something like this:

2



(define (prod L esc)
(cond
[(empty? L) 1]
[(cons? L) (cond

[(zero? (first L)) (esc 0)]
[else (* (first L) (prod (rest L) esc))])]))

where esc is an escaper.

The Real Thing

We’ll define the function real-prod which creates an escaper and calls prod
with it:

(define (real-prod L)
(let/cc k (prod L k)))

Whoa, what is this let/cc thing? (let/cc k body) turns the current context
into an escaper and binds it as k when evaluating body. So let’s see how it
works:

(real-prod ’(1 2 3 0 4 5 6))

⇒ (let/cc k (prod ’(1 2 3 0 4 5 6) k)), with k = (λ̂ (�) �)
⇒ ((λ (�) (* 1 (* 2 (* 3 �)))) (k 0))

⇒ ((λ (�) (* 1 (* 2 (* 3 �)))) ((λ̂ (�) �) 0))
⇒ 0

Another example

Let’s rotate lists (to the left):

(rl ’(1 2 3)) = ’(2 3 1)

Can we do it using let/cc?

(define (walk L esc)
(cond
[(empty? L) (let/cc last (esc last))]
[(cons? L) (cons (first L)

(walk (rest L) esc))]))

(define (rl L)
(let ([last (let/cc esc

(walk (rest L) esc))])
(last (list (first L)))))

This doesn’t quite work.

Exercise: Fix it.

3



Coroutines

You can also use continuations to define coroutines. Here, A does some com-
putation, then calls B. Then B does some computation and resumes A from the
point it called B.

(define (make-coroutine co-body)
(letrec ([state (lambda () (co-body resume))]

[resume (lambda (other)
(call/cc (lambda (here)

(set! state here)
(other))))])

(lambda ()
(state))))

(define A
(make-coroutine
(lambda (resume)

(printf "A1~n")
(resume B)
(printf "A2~n")
(resume B)
(printf "A3~n")
’done-with-A)))

(define B
(make-coroutine
(lambda (resume)

(printf "B1~n")
(resume A)
(printf "B2~n")
(resume A)
(printf "B3~n")
’done-with-B)))

Funny stuff

The let/cc form is really just a macro:

(let/cc k body) ≡ (call/cc (λ (k) body))

Question #1: What is (call/cc call/cc)?
Question #2: What is ((call/cc call/cc) (call/cc call/cc))?

4


