
Today’s Lecture Notes for cs173

sk and dbtucker

September 27, 2000

Writing an infinite loop

Yesterday we showed how to write an infinite loop in AFun!Exp. To recall, our
first attempt was:

(let (f (fun (n) (f (n))))
(f (7)))

This expression fails because it isn’t closed. We can try to fix it by binding an
f above:

(let (f 0)
(let (f (fun (n) (f (n))))
(f (7))))

But the f inside the function is still bound to 0, so we get an error upon applying
0 to 7. Finally, we decided to mutate the f:

(let (f 0)
[(set f (fun (n) (f (n))))
(7)])

Now the f in the function refers to a box, but the contents of that box are set
to the function. So the recursion works.

Let’s look at the example a bit more carefully:

1. The initial environment is:

E0 ≡ (fresh-sub)

2. The let expression creates a new environment that binds f to 0 in its
body:

E1 ≡ (new-sub ’f (numV 0) E0)

3. When the fun is evaluated, a closure is created which captures the envi-
ronment E1:

(funV ’n 〈...〉 E1)

1



4. The set expression then changes E1, so we get the following equivalence:

E1 ≡ (new-sub ’f (funV ’n 〈...〉 E1) E0)

Looking at this last equality, we see that we need an environment that refers
to itself. If we let:

P (E) = (new-sub ’f (funV ’n 〈...〉 E) E0)

the equation for E1 can be rewritten as:

E1 = P (E1)

E1 is called the fixed point of P .

Fixed point digression

It’s not obvious that a function has a unique fixed point. Consider these three
functions:

1. f(x) = x has infinitely many fixed points.

2. f(x) = 0 has exactly 1 fixed point.

3. f(x) = x + 1 has no fixed points.

However, P does have a fixed point.

Adding recursive bindings to our language

We often use recursive functions when writing programs, so we’ll add a construct
rec to our language1 to explicitly support recursion:

L ::= . . .
| (rec 〈id〉 〈L〉 〈L〉)

For example, we can write an infinite loop as follows:

(rec f (fun (x) (f (x)))
(f (17)))

The variable f is bound to the function, and the environment in the function’s
closure includes this binding.

We add a recE variant to the datatype for the abstract syntax tree:

(define-datatype AFunRecExp AFunRecExp?
[varE (v symbol?)]
1Similar to Scheme’s letrec.

2



[numE (n number?)]
[addE (lhs AFunRecExp?)

(rhs AFunRecExp?)]
[funE (param symbol?)

(body AFunRecExp?)]
[appE (fun AFunRecExp? )

(arg AFunRecExp? )]
[recE (var symbol?)

(fun AFunRecExp? )
(body AFunRecExp?)])

Now we need to write the recE case in the interpreter:

[recE (var fun body) . . . ]

Remember our discussion above—we want to interpret body in the environment
given by the fixed point of P . Let’s suppose we have a function fix-env which
computes the desired fixed point:

[recE (var fun body) (let ([P . . . ])
(interp body (fix-env P)))]

Next we fill in P , which is the environment transformer we defined above:

[recE (var fun body) (let ([P (lambda (env)
(new-sub var

(funV (get-funE-param fun)
(get-funE-body fun)
env)

d))])
(interp body (fix-env P)))]

We still have to write the function fix-env which computes the fixed point of
the environment transformer P . If we use the function representation for envi-
ronments, we can use Scheme’s letrec to define fix-env :

(define (fix-env P)
(letrec ([rec-env (P (lambda (id)

(get-sub id rec-env)))])
rec-env))

How does fix-env work? We define a new environment rec-env which contains
the binding for the recursive function. The environment in the recursive func-
tion’s closure is (lambda (id) (get-sub id rec-env)); in other words, it just looks
up the identifier in rec-env . Thus, the recursive function can refer to itself.

Another approach to writing fix-env is to use mutation. We can create a
dummy value as the closure’s environment, and then apply the transformer P
to get the environment in which to evaluate body (call it rec-env). Then we
mutate the dummy value to be rec-env , so the function closure’s environment
contains the binding for the function. The code is:

3



(define (fix-env F )
(let∗ ([set-env (box (fresh-sub))]

[rec-env (F set-env)])
(set-box! set-env rec-env)
rec-env))

(The let∗ expression is just shorthand for nested let expressions.) We also
have to modify two other parts of the interpreter because we use boxes to
implement mutation: environments are boxed when closures are created in funE ,
and environments are unboxed when calling interp in apply-fun.

4


