
Today’s Lecture Notes for cs173

sk and dbtucker

October 2, 2000

Topic: If’s & But’s

If’s

Exercise #1: Add an if expression to our language.

You need to extend the datatype to include booleans, add an ifE variant to
the datatype, and then add something that returns a boolean. (Our solution
has a eqE construct which tests the equivalence of two numbers.)

But’s

Recall our function real-prod from yesterday. How would you write it in a
language like Java? Easy—you would raise an exception:

(define (prod L)
(cond

[(empty? L) 1]
[(cons? L) (cond

[(zero? (first L)) (raise 0)]
[else (∗ (first L) (prod (rest L)))])]))

(define (real-prod L)
(try (prod L)
catch . . . ))

What should you do when you catch an exception (i.e. the . . . above)? We
could just evaluate some expression:

(define (real-prod L)
(try (prod L)
catch (3 + 4)))

But what if we want the exception handler to use the value contained in the
exception? Instead of introducing a new binding construct, we’ll can specify a
function of one argument as the exception handler. This function will be applied

1



to the value contained in the exception. In the case of real-prod , we want to
return the value in the exception (0), so the exception handler is just the identiy
function:

(define (real-prod L)
(try (prod L)
catch (lambda (v) v)))

Exercise #2: Add exceptions to our language.

We can support exceptions by creating an exception value, then always
checking the return value of a computation. For example, the addE case is:

[addE (le re) (let ([lv (interp le d)])
(cond

[(exn-value? lv) lv ]
[else (let ([rv (interp re d)])

(cond
[(exn-value? rv) rv ]
[else (numV+ lv rv)]))]))]

The tryE case then executes the handler if an exception is returned:

[tryE (e handler) (let ([val (interp e d)])
(cases AFunVal val

[exnV (v) (let ([hv (interp handler d)])
(apply-fun hv v))]

[else val ]))]

2


