
Today’s Lecture Notes for cs173

sk and dbtucker

September 8, 2000

Purpose: To make you forget about syntax.

Quote of the Day: “Syntatic sugar causes cancer of the semicolon.”—Alan
Perlis

Using datatypes

We know how to make lists using cons, first, rest, and empty. Now we show
how to create lists of numbers using the define-datatype mechanism:

(define-datatype LoN LoN?
[mt]
[kons (fst number?)

(rst LoN?)])

We can create an empty LoN:

(mt)

Or a LoN with one number:

(kons 3 (mt))

How do we write a function that sums the numbers in a list? Use the cases
construct.

(define (sum L)
(cases LoN L
[mt () 0]
[kons (fst rst)
(+ fst

(sum rst))]))

1



Parsing

We are given information in some format, which we want to turn into data.
Here are some examples:

Information Data
3 (num 3)
1 + 2 (add (num 1) (num 2))
5 × (1 + 2) (mult (num 5) (add (num 1) (num 2)))

We will write programs that operate on the data, so they will work regardless
of the information, provided that you can translate the information into data.
Such translators are called parsers.

We need to define a datatype for the data representation given above:

(define-datatype AExp AExp?
[num (n number?)]
[add (lhs AExp?) (rhs AExp?)]
[mult (lhs AExp?) (rhs AExp?)])

This says that an arithmetic expression (AExp) is either:

• a number,

• an addition of two arithmetic expressions, or

• a multiplication of two arithmetic expressions

In order to write a parser, we also need an external representation of the
information. Here’s the grammar:

L ::= 〈number〉
| (〈L〉 + 〈L〉)
| (〈L〉 * 〈L〉)

For example, (5 * (1 + 2)) is an L program. In Scheme, this is just a list
of symbols.

How do we turn an L program into an AExp? We write a parser:

;; parse : L program -> AExp
(define (parse L)
(cond
[(number? L) (num L)]
[(symbol=? (second L) ’+) (add (parse (first L))

(parse (third L)))]
[(symbol=? (second L) ’*) (mult (parse (first L))

(parse (third L)))]))

That’s it. The first line specifies the contract—the type of input the parse
expects, and the type of output it produces.

2



Our first interpreter

Now that we have an AExp, how do we compute a value from it?

;; calc : AExp -> number
(define (calc a)
(cases AExp a
[num (n) n]
[add (le re) (+ (calc le) (calc re))]
[mult (le re) (* (calc le) (calc re))]))

Voilà. Note that we use the Scheme definitions of + and * to specify how we
reduce add and mult, respectively.

There are two types of terms in our algebra, values and computations:

• values: num

• computations: add, mult

An interpreter is a program that consumes computations and values, and returns
values.

3


