Today’s Lecture Notes for ¢s173

sk and dbtucker
September 22, 2000

Theme: Having fun (in your language) is harder than it seems.

Eager vs. lazy semantics

Question 2 of homework 2 asked for an expression that shows the difference
between eager and lazy semantics. To recall: “The two computations may
differ in any way, so long as if they both yield a value, the value must not be
the same number or a closure that produces the same value for all values it is
applied to.”

There were 3 popular answers:

1. (et (x (1 / 0))
0)

Under eager semantics, (1 / 0) is evaluated, which produces an error.
Under lazy semantics, (1 / 0) is never evaluated, since x is not present
in the body of let, 0. Thus the result is 0.

2. (let (x <infinite loop>)
3)

If we can write an <infinite loop> in our language, then this expression
will not terminate under eager semantics, but will evaluate to 3 under lazy
semantics.

3. (let (y 5)
(let (x y)
(let (y 4)
x)))

WRONG! This expression does not meet the requirements—it evaluates
to 5 under both the eager and lazy semantics. The point of confusion is
that an incorrect lazy interpreter will do dynamic binding here, and thus
bind the x to the second y. A correct lazy interpreter will compute this
expression to 5. (Consider how this expression is evaluated lazily using
substitution.)

An eager interpreter using Scheme’s lambda

Question 3b asked for an interpreter that (a) uses Scheme’s closures to repre-
sent closures in our language and (b) uses Scheme’s function application to do
application in our language. So, most of the code writes itself; we know that
the appE case is a simple application in Scheme, and that funE must return a
closure (i.e. a lambda expression).

(define (interp a d)
(cases AFunExp a
[numE (n) nl
[varE (v) (get-sub v d)]
[addE (le re) (+ (interp le d) (interp re d))]
[multE (le re) (* (interp le d) (interp re d))]
[funE (param body)
(lambda (argval)
C...n]

[appE (fe ae) ((interp fe d) (interp ae d))]))

The only question is the body of the 1ambda that is returned in the funkE case.
Let’s look at a concrete example:

(interp ((fun (x) (x + y)) (2 + 3)) d)
where d is {y — 1}. So far we know that this expression computes to:

((lambda (argval) (...)) 5)

Now the next thing that will get evaluated is (...), and Scheme will bind
argval to 5 in this expression. What we really want next is to evaluate the
body of the fun—that is, (x + y)—where the environment d is extended by
{x — 5}. In other words:

(interp (x + 1) (new-sub ’x 5 d))

In general, we want to evaluate the body, where param is bound to argval.
Now the code is easy to see:

(define (interp a d)
(cases AFunExp a
[numE (n) n]
[varE (v) (get-sub v d)]
[addE (le re) (+ (interp le d) (interp re d))]
[multE (le re) (* (interp le d) (interp re d))]
[funE (param body)
(lambda (argval)
(interp body (new-sub param argval d)))]

[appE (fe ae) ((interp fe d) (interp ae d))]))

A couple of notes:

1. The key observation here is that Scheme itself uses static binding. There-
fore, when we write d in the lambda expression of the funE case, we know
that it will be bound to the value of d when the funE was evaluated.

2. Since we'’re using Scheme’s closures as values, we decided to use Scheme’s
numbers as values too.

The story so far

There were 4 interpreters for part 3 of the homework. The two variables are
evaluation strategy (eager vs. lazy) and closure representation (datatypes vs.
Scheme’s lambda).

|| datatype | lambda

eager || done 9/15 | done today
lazy ? next up

A lazy interpreter using Scheme’s lambda

One is tempted to modify the eager interpreter by simply changing the varE
and appE cases as follows:

[varE (v) (interp (get-sub v d) d)]
[appE (fe ae) ((interp fe d) ae)]

and hoping that all is hunky-dory. Unfortunately, this solution doesn’t quite
work. Let’s look at an example (due to Rob) that fails:

(let (x 3)
(let (f (fun (x) (2 * x)))
(f (x +4)))

This expression should evaluate to 14. Following through the evaluation, we
eventually reduce the expression to (2 * (x + 4)) in the environment {x —
(x + 4)}. Now we have a problem—this computation will not terminate.

The current problem is the same one we had when we introduced delayed
substitutions: some expressions are not being evaluated in the environment in
which they were created. In the above, (2 * (x + 4)) should be evaluated
in the environment {x — 3}. Our solution before was to create closures for
function values; here, we will create closures for all expressions being bound by
lambda application.

The key is this: when we have a function application, we need to capture
the environment for the argument expression (which isn’t evaluated right away).
We create a thunk—a function of no arguments—whose body contains the com-
putation we will do lazily. Then when we encounter a variable, we look it up in
the environment and evaluate the thunk that is returned.

(define (interp a d)
(cases AFunExp a
[numE (n) nl
[varE (v) ((get-sub v d))]
[addE (le re) (+ (interp le d) (interp re d))]
[multE (le re) (* (interp le d) (interp re d))]
[funE (param body)
(lambda (argval)
(interp body (new-sub param argval d)))]
[appE (fe ae) ((interp fe d)
(lambda () (interp ae d)))1))

Notes:

1. The thunk is created by (lambda () (interp ae d)).

2. The thunk is evaluated by ((get-sub v d)).

