
Object-Oriented Types

sk and dbtucker

October 30, 2000

Casts and subtypes

For today, let’s assume we’re back in a monomorphic world. Recall the nlist
datatype:

(datatype nlist
[nempty]
[ncons (f num)

(r nlist)])

In the assignment Design 1, we introduced three new types for this datatype:
nlist, nemptyT, and nconsT. The constructors now return values of the appro-
priate variant type:

nempty : () → nemptyT
ncons : num × nlist → nconsT

The selectors can only operate on values of the correct variant type:

f : nconsT → num
r : nconsT → nlist

Let’s see if we can define the function length using these new types:

(define length
(λ (L : ???)

(if (nempty? L)
0
(+ 1 (length (r L))))))

The argument L can be either an nemptyT or an nconsT, so what do we write
for the type of the argument? The only type that makes sense is nlist:

(define length
(λ (L : nlist)

(if (nempty? L)
0
(+ 1 (length (r L))))))

1



We want to say that both nemptyT and nconsT are nlists. How do we write type
judgments that express this?

Γ ` e : nemptyT

Γ ` e : nlist

Γ ` e : nconsT
Γ ` e : nlist

To see how these rules are used, consider the proof tree for (ncons 1 (nempty)):

{} ` 1 : num

{} ` (nempty) : nemptyT

{} ` (nempty) : nlist
(← new rule)

{} ` (ncons 1 (nempty)) : nconsT

Since nempty creates a value of type nemptyT, and the second argument to
ncons must be an nlist, we need to use the new type judgment.

Are these new rules sufficient for type checking length? Let’s look at the
subexpression (r L). The selector r has type:

r : nconsT → nlist

There’s a problem: r consumes an nconsT, but L is an nlist. We need to say
something like:

(r (cast L nconsT))

The expression (cast e τ) has no run-time semantics—its value is just the value
of e. The importance of the cast construct is that it tells the type checker to
treat expression e as having type τ . The type judgment is thus:

Γ ` e : τ ′

Γ ` (cast e τ) : τ

How can we tell if cast will succeed? Let’s look at several cases:

τ τ ′ what to do
nconsT nlist upcast—always succeeds
nemptyT nlist upcast—always succeeds
nlist nconsT downcast—need to check at run-time
nlist nemptyT downcast—need to check at run-time
nlist num random cast—can reject during type-checking
num → bool num random cast—can reject during type-checking

Upcasts always succeed, but downcasts can possibly fail—for example, (cast
(nempty) nconsT) should fail, because otherwise you could call rest on an empty
list. No matter how you try to implement the length function, you need a
downcast somewhere. This downcast must be checked at run time to ensure
type soundness.

2



We can state the rule governing casts differently by adding the following
restriction:

τ is above τ ′ or τ ′ is above τ

By “above”, we mean that the second type is a subtype of the first; for example,
nemptyT is a subtype of nlist. We denote this by nemptyT <: nlist. So, we can
write the restriction as:

τ <: τ ′ or τ ′ <: τ

What this means is that the rule only applies when τ and τ ′ are so related. All
other casts are what we call “random casts”, and should be rejected immediately
by the type checker.

Cases

We want to abstract over this casting so that instead of cluttering our code
with cast expressions, some other function does the work for us. We can write
a function nlist-cases that will handle the casting. Its type is:

nlist-cases : nlist × (nemptyT → α) × (nconsT → α) −→ α

The function definition is:

(define (nlist-cases L : nlist f1 : (nemptyT → α) f2 : (nconsT → α))
(if (nempty? L)

(f1 (cast L nemptyT))
(f2 (cast L nconsT))))

Now we can write the length function without using casts:

(define length
(λ (L : nlist)

(nlist-cases L
(λ (emptyL : emptyT ) 0)
(λ (consL : consT ) (+ 1 (length (r consL)))))))

Splitting up datatype

Let’s split up the datatype declaration of nlist into three fragments, one for each
type we create:

(define-type nlist)

(define-type nemptyT <: nlist)

(define-type nconsT <: nlist
[n num]
[r nlist])

3



We could also use this form of define-type to describe our abstract syntax tree,
which now becomes:

(define-type LExp)

(define-type numE <: LExp
[n num])

(define-type addE <: LExp
[lhs LExp]
[rhs LExp])

Assume the compiler automatically creates the cases function:

LExp-cases : LExp × (numE → α) × (addE → α) −→ α

So we can write our intepreter using LExp-cases:

(define eval
(λ (e : LExp)

(LExp-cases e
(λ (e : numE) (n e))
(λ (e : addE) (+ (eval (lhs e)) (eval (rhs e)))))))

However, nothing prevents us from adding a new subtype of LExp:

(define-type multE <: LExp
[lhs LExp]
[rhs LExp])

How can we write a new interpreter eval-new that consumes a new LExp (with
the multE subtype) without rewriting the exisiting interpreter eval , or even
looking at the source of eval? Try to do so as an exercise.

Where is all of this going? The define-type construct looks a lot like C++
or Java class declarations. In fact, C++ must use run-time tags on objects for
the same reasons as we’ve presented here—to perform downcasting safely. In
the next class, we will explore object-oriented languages further.

4


