
Today’s Lecture Notes for cs173

sk and dbtucker

October 18, 2000

Type checking datatype expressions

How do we type check datatype expressions? We need to prove that the body of
the expression has some type t in an extended type environment, and we define
this type t to be type of the expression:

Γ[. . .] ` e : t

Γ ` (datatype τ
[v1 (s11 τ11) (s12 τ12) . . . ]
[v2 (s21 τ21) (s22 τ22) . . . ]
e) : t

How should we extend Γ in order to type check the body? Remember, we added
three kinds of functions in the body; here are examples of those functions and
their types:

Contructors The function v1 has type τ11 × τ12 × · · · × τ1m → τ .

Predicates The function v1 ? has type τ → bool.

Selectors The function s21 has type τ → τ21.

We need to extend Γ with these functions and their types in order to type check
the body of the datatype expression:

Γ
[

v1 : τ11 × τ12 × · · · × τ1m → τ v1? : τ → bool s1i : τ → τ1i

v2 : τ21 × τ22 × · · · × τ2n → τ v2? : τ → bool s2j : τ → τ2j

]
` e : t

Γ ` (datatype τ
[v1 (s11 τ11) (s12 τ12) . . . ]
[v2 (s21 τ21) (s22 τ22) . . . ]
e) : t

where i ranges over 1 . . . m (the fields of v1) and j ranges over 1 . . . n (the fields
of v2).

For example, the following code creates a number list and computes its
length:

1



(datatype nlist
[mt]
[cons (first num) (rest nlist)]
(rec length : (nlist -> num)

L
(if (mt? (L))

0
(1 + (length ((rest (L))))))

(length (cons 1 ((cons 2 ((cons 3 ((mt))))))))))

This expression evaluates to 3, which has type num. We could also write an
expression that just returns the list:

(datatype nlist
[mt]
[cons (first num) (rest nlist)]
(cons 1 ((cons 2 ((cons 3 ((mt))))))))

The result of this expression is (cons 1 (cons 2 (cons 3 (mt)))), which has
type nlist. This is a problem—the type nlist has escaped the scope in which
it is defined!

The value (cons 1 ((cons 2 ((cons 3 ((mt))))))) is useless outside of
the datatype scope, since we don’t have any way to look at values of type
nlist. To prevent the type from escaping, we can add a restriction to the type
judgement:

Restriction #1: t cannot be τ .

Actually, this restriction isn’t strong enough. Consider this expression:

(datatype nlist
[mt]
[cons (first num) (rest nlist)]
(vector ((mt))))

The result is a vector of nlists. We can perform operations on the vector, such
as computing its length, but we still can’t get any information from the nlists.
It would have been equally effective to simply return the length of the vector,
if that’s what we were interested in. So, we make a stronger restriction:

Restriction #1 (revised): τ cannot be free in t.

Another problem arises from defining two datatypes with the same name:

(datatype A
[v1 (f1 num)]
(datatype A
[v2 (f2 bool)]
(f2 ((v1 (3))))))

2



Here, v1 : num → A, and f2 : A → bool, so according to the type sys-
tem, (f2 ((v1 (3)))) has type bool. However, v1 really constructs val-
ues of the first A type, whereas f2 consumes values of the second A type, so
(f2 ((v1 (3)))) should be a type error. We’ll just say that you can’t use the
same name for two datatypes:

Restriction #2: τ cannot be in Γ.

There are two limitations of our datatype expression. First, we can’t return
values of the defined datatypes. Second, we can’t create mutual type references.
Most languages overcome these limitations by requiring all datatypes to be
defined at the top level:

Program ::= (datatype definition)* L-expression

Variant predicates

Look at the nlist datatype again:

(datatype nlist
[mt]
[cons (first num) (rest nlist)]
...)

How do we evaluate predicates such as (cons? L)? We need to know at run time
which variant L is. Therefore, we tag each value of type nlist with its variant
type, mt or cons. In this case, we only need one bit to distinguish between the
two variants (in general, you need log2(# of variants) bits). What if you have
two datatypes, A and B?

(datatype A
[v1 (f1 int)]
[v2 (f2 int)]
(datatype B
[v3 (f3 int)]
[v4 (f4 int)]
...))

Do you need one or two bits to tag each value? That is, do you need to distin-
guish variants only within their datatype, or across all datatypes?

The answer is that you only need to distinguish variants within a datatype,
because variants of different datatypes will be distinguished by the type checker.
For example, consider (v1? ((v3 (6)))). This expression will not type check
because v3 produces values of type B, but v1 consumes values of type A.

3



Type safety

What do we mean when we say an interpreter is type safe? Here’s the definition:

Type safety is the property that no primitive operation is ever ap-
plied to values of the wrong (dynamic) type.

By primitive operations, we mean not only primitives such as addition, but
operations such as function application.

Note that type safety is a property of the evaluator. In particular, a language
can be type safe even if it has no static type checker (this is the case with
Scheme).

We can make a table of languages based on whether they are type checked
and whether they are type safe:

checked not checked
safe ML, Java Scheme

unsafe C, C++ assembly

Without the type safety property, type soundness breaks. Therefore, the
unsafe languages in the above chart do not have sound type systems. Those
languages which are type checked but not type safe (e.g., C and C++) are truly
insidious, since the type checker leads you to believe that your program will not
perform any unsafe operations, when in fact you have no such guarantee.

4


