
Today’s Lecture Notes for cs173

sk and dbtucker

September 25, 2000

Topic: The Big Bang!

A language with state

In Scheme, you can change the value of a variable using the function set!. We
will study how to add such a feature to our language. First, we introduce the
variant setE in our datatype (now called AFun!Exp):

(define-datatype AFun!Exp AFun!Exp?
[varE (v symbol?)]
[numE (n number?)]
[addE (lhs AFun!Exp?) (rhs AFun!Exp?)]
[setE (var symbol?) (val AFun!Exp?)]
[funE (var symbol?) (body AFun!Exp?)]
[appE (fun AFun!Exp?) (arg AFun!Exp?)])

We will also need the following operations (provided by Scheme) to mutate
variables:

;; box : ’a -> Box (’a)
;; unbox : Box (’a) -> ’a
;; set-box! : Box ’a * ’b -> ()

These functions do the obvious: box puts a value in a box, unbox takes a value
out of a box, and set-box! changes the value in the box.

For example, consider the following Scheme code:

(let ([x (box 5)])
(set-box! x 6)
(unbox x))

This expression evaluates to 6. Note that:

(let ([x (box 5)])
(set-box! x 6)
x)

1



evaluates to (box 6).
Now we will update our interpreter to handle setE. First of all, our environ-

ment now maps symbols to boxes of values, rather than symbols to values:

;; DSub = symbol -> Box (Value)

When we add variable to the environment (we only do so in apply-fun), we
want to throw it in a box:

(define (apply-fun fv av)
(cases AFunVal fv

[funV (param body env)
(interp body

(new-sub param (box av) env))]
[else (error ’apply-fun "~s not an applicable value" fv)]))

When we substitute for a variable (the varE case of interp), we need to take
it out of its box:

[varE (v) (unbox (get-sub v d))]

Now we just need to handle the setE case. Since every expression must compute
to some value, we’ll say the value of a setE expression is whatever the right-hand
side computes to.

[setE (var val) (let ([box-v (get-sub var d)]
[val-v (interp val d)])

(set-box! box-v val-v)
val-v)]

The whole interpreter looks like this:

(define (interp a d)
(cases AFun!Exp a

[varE (v) (unbox (get-sub v d))]
[numE (n) (numV n)]
[addE (le re) (numV+ (interp le d) (interp re d))]
[setE (var val) (let ([box-v (get-sub var d)]

[val-v (interp val d)])
(set-box! box-v val-v)
val-v)]

[funE (var body) (funV var body d)]
[appE (fe ae) (apply-fun (interp fe d) (interp ae d))]))

Order of evaluation

Now that we have state, order of evaluation matters. For example:

(let (x 3)
(x + (set x 4)))

2



evaluates to 7, whereas:

(let (x 3)
((set x 4) + x))

evaluates to 8, assuming that the arguments are evaluate from left to right. Is
this a fair assumption? Our interpreter says:

[addE (le re) (numV+ (interp le d) (interp re d))]

So our order of evaluation is going to be whatever Scheme’s order is. Since
Scheme evaluates arguments from left to right, so does our interpreter.

Lather, rinse, repeat

Let’s try to write an infinite loop using our new language1. Here’s one shot at
it:

(let (f (fun (n) (f (n))))
(f (1)))

This expression won’t work because it’s not even closed—the f in the body of
the fun is unbound. We can fix this using set:

(let (f 0)
((set f (fun (n) (f (n))))
1))

Here we first bind f to a dummy variable (0), then use set to bind it to a
function. Now the f in the function refers to itself! So, the function applied to
any argument (here, 1) won’t terminate.

1In fact, it’s possible to write an infinite loop using just AFunExp (i.e. without state).

3


