
Today’s Lecture Notes for cs173

sk and dbtucker

October 16, 2000

Topic: Datatype

Datatype

Recall the Scheme datatype for DSub (we’ve added a name field to the fresh-sub
variant just to make the example clearer):

(define-datatype DSub DSub?
[fresh-sub (name symbol?)]
[new-sub (var symbol?)

(value Value? )
(rest DSub?)])

How would you write the equivalent data structure in C? You need structs to
to represent each variant...

struct {
symbol *next;

} fresh_sub;

struct {
symbol *var;
Value *value;
DSub *rest;

} new_sub;

...a union to combine the variants...

union {
struct {
symbol *next;

} fresh_sub;
struct {
symbol *var;
Value *value;
DSub *rest;

1



} new_sub;
} variants;

...and an outer struct to keep track of the variant type...

struct DSub {
enum {FRESH_SUB, NEW_SUB} variant_type;
union {
struct {
symbol *next;

} fresh_sub;
struct {
symbol *var;
Value *value;
DSub *rest;

} new_sub;
} variants;

};

Note that in the C version, we need to use a pointer (DSub *) to represent
a recursive data structure. However, when we program over recursive data
structures, we use recursive functions, not goto’s. The analogy between pointers
and goto’s is strong; they are the analogous constructs in the data and control
domains.

Pointers are the goto’s of data-structures.

Just as we don’t use unconstrained goto’s in our programs, we shouldn’t
in our data either. Indeed, pointers are even more insidious, because most
languages won’t allow you to add something to a goto label to get a new label,
which you can then use as the target of a jump. Yet you can do that with
pointers—and since C has function pointers, you can simulate the effect of
“goto label addition” and jump right into the middle of nonsense.

The Maybe datatype

Remember that the type rule for if requires that both branches have the same
type:

Γ ` c : bool Γ ` t : τ Γ ` f : τ

Γ ` (if c t f) : τ

This means we can’t write expressions like:

(if ...
true
3)

2



What use is such an expression, though? One example is Scheme’s member
function; (member x L) returns #f is x is not in the list L, otherwise it returns
the sublist beginning with x .

However, this function wouldn’t type check if Scheme used the above type
rule for if. To make both branches return the same type, we could create a new
datatype called Bool Or List :

(define-datatype Bool Or List Bool Or List?
[aBool (b boolean?)]
[aList (l list?)])

Then the function would return (aBool #f) or (aList l) depending on the case,
and the type checker would determine that the return type of the function is
Bool Or List .

A more general datatype for expressing such values is the Maybe datatype:

(define-datatype Maybe Maybe?
[yes (v value?)]
[no])

The idea is to use the yes variant when returning some value, and the no variant
when there is no value. For example, the member function would return (yes l)
if the element was in the list, or (no) otherwise.

A similar datatype can be used for representing file ports. At any time, a file
port is in one of three states: unopened, open, or closed. The datatype reflects
these states:

(define-datatype FilePort FilePort?
[unopened ]
[open (p Port?)]
[closed ])

Adding datatype to our language

We want the ability to define new datatypes in our language. We’ll add a
datatype expression, which defines the new type and allows it to be used in the
body of the expression. The grammar is:

L ::= . . .
| (datatype τ

[var1 (field11 τ) (field12 τ) . . . ]
[var2 (field21 τ) (field22 τ) . . . ]
〈L〉 )

For example, we can use datatype to create number lists:

(datatype nlist
[mt]
[cons (first num) (rest nlist)]

3



...)

The datatype expression creates the new type specified by τ , and binds several
new functions in the body:

Contructors The functions var1 and var2 are constructors. For example, var1
takes field11 , field12 , &c. as arguments, and returns a new value of type
τ .

Predicates The functions var1 ? and var2 ? are predicates. For example, var1 ?
takes a value of type τ and returns true iff the value was created by var1 .

Selectors (or field accessors) The functions field11 , field21 , &c. are selec-
tors. For example, field11 takes a value of type τ , and returns the value
denoted by field11 . Note that (field11 (var2 v)) should raise an exception,
because the function field11 only operates on values which were created
by var1 .

To summarize, in the body of a datatype expression, there is a new type
τ , and new functions for creating and using values of this type—constructors,
predicates, and selectors. In the nlist example, the new functions are:

• constructors: mt and cons

• predicates: mt? and cons?

• selectors: first and rest

4


