
Today’s Lecture Notes for cs173

sk and dbtucker

October 23, 2000

Magical polymorphism

Yesterday we saw one way to implement parametric polymorphism. The big
problem was that you had to write a lot of code—every time you wanted to
use a polymorphic function, you had to specify any parameterized types before
invoking the function.

Let’s say we’re no longer going to annotate function arguments with their
types, and instead we’ll have the type checker somehow figure out those types.
Previously, our type checker consumed an expression and returned true or false
depending on whether there were any type errors. Now, the type checker con-
sumes an expression and returns a type it has inferred for that expression.

Since we don’t annotate arguments with their types, there’s no point in
specifying the types a function is parameterized over (using Λ). So, the type
checker has to determine whether a function is polymorphic, and then ensure
that it is applied legally based on its polymorphic type.

To infer these function types, we need do to two steps. First, we’ll label
each subexpression with a type, and then develop equations relating these types.
Second, we’ll solve the set of equations to determine the type of the function.
For now, we’ll assume we have some sort of “magic” that will perform the second
step for us.

We’ll look at a number of examples where we don’t specify the type of a
function’s parameter, and derive the correct type of the function.

Example 1

(λ (x : ) x )

This is the identity function. For any value of type τ , it simply returns that
value of type τ . So, we expect this function to have type τ → τ . Now let’s
derive this using our wits, with a little help from magic. We’ll write down types
for subexpressions, then relate those types with equations.

The first subexpression to label is the entire function. Let’s say it has some
type α, where α is an unconstrained variable—it could be bool , num, bool →
num, or any other of your favorite types.

1



Since the entire expression is a function, we can assume it has some sort of
arrow type. So we write down this equation:

α = β → γ

where β and γ are new unconstrained types. The argument to the function, x,
must be of type β:

type(x) = β

Say the body of the function has some type δ. The body is just x, so:

type(x) = δ

Finally, we note that the return type of the function is the same as the type of
the body:

γ = δ

Here’s the complete list of equations:

α = β → γ

type(x) = β

type(x) = δ

γ = δ

Now we invoke magic to solve these equations, and we see that α = β → β.

Example 2

(λ (x : ) (+ x 10))

Since the + function operates on nums, x must be a num. The + function
also returns a num, so our function above has type num → num. Now let’s
derive this type using the same method as before. First, we say the function
has type α:

α = β → γ

type(x) = β

Let’s say the body has type δ, so:

δ = rng(type(+))

where rng means the range (return type) of a function (rng(ω → τ) = τ). We
know the type of +, so:

δ = rng((num × num)→ num) = num

The type of + also requires that its two arguments have type num:

type(x) = num

2



type(10) = num

Since type(x) = β and type(x) = num:

β = num

The return type of the function (γ) is the same as the type of the body:

γ = δ = num

Now we know the type of the function:

α = num → num

Example 3

(λ (x : ) (x 3))

The argument x is applied to 3, so it must be a function which takes a num
and returns a value of some type τ . The overall function has the same return
type as x, so its type must be (num → τ) → τ . Let’s try to infer this type.
Again, we start by saying the function has some type α:

α = β → γ

type(x) = β

The body of the function must have type γ:

γ = type((x 3))

Since x is a function, it must have some arrow type:

type(x) = δ → ϕ

We know that δ must equal the type of the argument:

δ = type(3) = num

The type of the (x 3) is the return type of x:

type((x 3)) = ϕ

By transitivity, we now have:
γ = ϕ

So the type of the overall function is:

α = (num → γ)→ γ

3



Example 4

(λ (x : ) (∗ x (x 10)))

This function should not type check, since x is used both as num and as a
function. How do we prove that there is no type we can infer? We know the
type of ∗:

type(∗) = num × num → num

Since ∗ takes two nums as arguments, and x is one of the arguments, we know:

type(x) = num

In the subexpression (x 10), x is a function, so it must have an arrow type:

type(x) = δ → ϕ

So by transitivity, we have:
num = δ → ϕ

This is an unresolvable conflict—there is no way to make type num equal to an
arrow type. Therefore the overall function has a type error.

Example 5

Recall the map function:

(define map
(λ (f L)

(cond
[(empty? L) empty]
[(cons? L) (cons (f (first L))

(map f (rest L)))])))

Exercise: Verify that map has the following type:

(α→ β)× list(α)→ list(β)

Let expressions

What is the type rule for let?

Γ ` val : δ Γ[var ← δ] ` body : τ

Γ ` (let (var val) body) : τ

Remember that we said let is just shorthand for the following expression:

(let (var val) body) ≡ ((λ (var) body) val)

4



In our typed language, though, we were required to annotate the function argu-
ment var with its type. Why don’t we need to do so in a let expression? The
reason is that we know the type of val immediately, so var must also have that
type.

Can we type check the following expression using magical polymorphism?

(let (f (λ (x ) x ))
(f 3))

Yes, we can. How about the following expression, though?

(let (f (λ (x ) x ))
(if (f true)

(f 3)
(f 4)))

No, we can’t type check this expression, because we use the function f in two
places—one where it has type bool → bool , and another where it has type
num → num. We’ll end up with a set of equations which includes:

type(f) = δ → ϕ

δ = num

δ = bool

So we end up with num = bool , which is a contradiction.
The above expression should type check though. In fact, if we just substi-

tuted f into the body of the let-expression before type checking, the resulting
expression would type check perfectly fine.

5


