
Deriving and Solving Type Constraints

sk and dbtucker

October 25, 2000

Equational types

In the previous class, we type checked polymorphic functions by generating
equations in an ad hoc manner, then using magic to solve these equations.
Today we will see how to accomplish both of these tasks in a systematic way.

Remember that we were allowed to introduce unconstrained type variables
into our equations. In order to use these variables in our type rules, we need to
extend the type grammar:

type ::= num
| bool
| type → type
| tvar

We also need some way to represent the equations that constrain the type vari-
ables. Every time we assign a type to expression, we’ll carry along the set of
equations we’ve generated. We call this combination an equational type, and we
write it as:

type \ set of equations

For example,
num \ {}

is an equational type. So is:

num → bool \ {}

We can also use type variables:

α \ {α = num}

In this equational type, α is a type variable, and the set of equations constrains
α to be num.

Let’s write down the type rules using equational types. The type environ-
ment Γ still maps variables to types, but now we infer an equational type for
each subexpression. The basic idea is as follows. Since function arguments are
no longer annotated with their types, when we come across a function, we will

1



say its argument has some unconstrained type (which we denote with a type
variable). As we type check the body of the function, we will derive constraints
on the type variables and carry them along in the equational types.

We’ll start with numbers—the rule says that any number has type num, and
there are no equations constraining types:

Γ ` 〈number〉 : num \ {}

Similarly, for booleans we have:

Γ ` 〈boolean〉 : bool \ {}

The rule for variables is much the same—we look up the variable’s type in Γ,
and there are no constraints on that type:

Γ ` v : Γ(v) \ {}

Next we’ll look at the addition case, (l+r). We know that we can infer some
equational type for l and r:

Γ ` l : τl \ El Γ ` r : τr \ Er

Γ ` (l + r) : ???

Why didn’t we just say that l must have some type num \ E1? As we’ll see later,
it’s possible that the type of l is a type expression containing type variables,
which are constrained in El. If we write num in place of τl, we are demanding
that the constraints be solved and checked for τl being equal to num in the midst
of constraint generation. We take the equivalent but more relaxed approach of
constraining τl to be num in the consequent of the + judgement:

Γ ` l : τl \ El Γ ` r : τr \ Er

Γ ` (l + r) : num \ El ∪ Er ∪ {τl = num, τr = num}

Two important notes:

1. the equations generated by the subexpressions are included in the equa-
tions for the overall expression

2. τl is just a meta-variable—in a proof tree, it would be replaced by a type
or a type variable.

The next case we’ll consider is function abstraction, (λ (v) e). Remember
that the function argument v is no longer annotated with its type. Previously,
we extended Γ with v and its type, and proved that the body e has some type.
Now, we’ll say v’s type is some type variable α , and then type check the body:

Γ[v : α ] ` e : τ \ E

Γ ` (λ (v) e) : ???

2



What is the type of the function? Its argument has type α , and its body has
type τ1, so it must have type α → τ1:

Γ[v : α ] ` e : τ \ E

Γ ` (λ (v) e) : α → τ \ E

Now we’ll write the rule for function application. Here’s a start

Γ ` f : τf \ Ef Γ ` a : τa \ Ea

Γ ` (f (a)) : ???

The function has type τ1, but we don’t know its return type (remember, τ1

could be a type variable). So we’ll introduce a new type variable α and add
the constraint that it is the return type of the function:

Γ ` f : τf \ Ef Γ ` a : τa \ Ea

Γ ` (f (a)) : α \ Ef ∪ Ea ∪ {τf = τa → α }
The type rule for if should now be straightforward:

Γ ` c : τc \ Ec Γ ` y : τy \ Ey Γ ` n : τn \ En

Γ ` (if c y n) : α \ Ec ∪ Ey ∪ En ∪ {τc = bool, α = τy, α = τn}
Let’s try out these rules on a small example. What is the type of the following

expression?
(λ (x) (x 2))

Since x is applied to 2, it must be an arrow type num → α, thus the overall
function has type (num → α) → α. Using our rules, we get this type derivation:

{x : α } ` x : α \ {} {x : α } ` 2 : num \ {}
{x : α } ` (x 2) : β \ { α = num → β }

` (λ (x) (x 2)) : γ \ { γ = α → β , α = num → β }

If we conjure some magic to solve the equations, we see the type of the expression
is (num → β ) → β , which is what we expected.

Solving the equations

What we have so far is not a type checker. For one, it doesn’t reject any
programs—it only generates constraints on types. Now we’ll give an algorithm
for solving these constraints.

Step 1: Generate constraints

This is what we did above.

3



Step 2: Close constraints

To compute the closure of our constraint set E, we need three properties to
hold:

1. Symmetry. If a = b ∈ E, then b = a ∈ E.

2. Transitivity. If a = b ∈ E and b = c ∈ E, then a = c ∈ E.

3. Compatibility. The idea here is to “break up” constructed types into their
components. For example, if x = a → b ∈ E and x = c → d ∈ E, then
add a = c and b = d to E.

Step 3: Detect conflicts

Next we see if there are any conflicts in our constraint set. In our current set
of types, the possible conflicts are:

num = bool

num = a → b

bool = a → b

If any of these equations appear in our set, the system of equations is not
consistent. This means the program has a type error, so we reject it.

Although we know there’s an error, we don’t know its source. As an exercise,
can you determine where the error came from using some slight modification of
the constraints?

Step 4: Printing types

Now we have some type α \ E. What type do we report to the programmer?
We’ll study this question in the next class.

4


