
Modules and Components

sk and dbtucker

December 4 & 6, 2000

This semester we have studied three aspects of programming languages:
control, data, and runtime systems. Today we’ll discuss a different aspect—
organization. The goal is to let software do things outside the scope it was
originally intended to serve.

In order to organize large programs, we need two features. First, we need
some high-level scoping construct to break the program into several smaller
pieces. Second, we need a way to compile these pieces separately.

Separate compilation is the essence of program organization. It allows us
to compile one fragment of the program without having the source code of
another fragment, even though it uses the other fragment. C has separate
compilation—it requires that you give a partial description (called a prototype)
of any external functions you use. The prototype doesn’t tell the implementation
of the function, just its type.

Let’s design a module system; we’ll focus on scoping first. The keyword
module will introduce a new module, in this instance named M :

(module M
(define d1 . . . d2 . . . )
(define d2 . . . )
(define d3 . . . ))

The module M contains definitions of d1 , d2 , and d3 . The definition of d1
refers to d2 .

So far this module is completely useless. What features do we need to make
our module system useful?

• A way to get stuff out of the module.

• A way to enforce privacy (which parts of the module should be visible to
other parts of the program).

• A way to import other modules.

We’ll add an import statement that loads the publicly visible definitions of
another module Mi into the module M we’re defining. We’ll also add an export
statement that declares which definitions in M should be publicly visible:

(module M

1



(import M1 M2 . . . Mk)
(define d1 . . . d2 . . . )
(define d2 . . . )
(define . . . )
(export d1 d2 . . . dm))

We still need some way to get stuff out of the module so we can use it in our main
program. We’ll introduce a with expression, which binds the public definitions
of a module M in its body:

(with M
. . . )

Alternatively, we can access definitions of a module via dot notation; for exam-
ple, M.d refers to definition d in module M .

Where do we get the names of modules? We’ll assume there’s a global
namespace of modules that is distinct from any other namespace. So, if we have
a module RSA, we could write:

(let (RSA . . . )
(with RSA

. . . ))

In this expression, the first RSA refers to some local variable we are binding,
whereas the second RSA refers to a module bound in the global module names-
pace.

We would like to implement modules without adding any new rules to the
interpreter. Can we transform modules into Scheme code? Yes, but we must
first compromise and say we won’t have separate namespaces. We can represent
a module as a function which takes an argument d and returns the definition
labelled by d :

(define M
(λ (d)

(if (member? d exports)
(case d

[(d1) . . . d2 . . . ] ;; return the body of definition d1
[(d2) . . . ])

(error . . . ))))

There’s a problem—the definition of d1 refers to another definition in the mod-
ule, d2 . When we evaluate (M d1 ) in our program, the d2 in the definition
of d1 won’t refer to the definition of d2 in the module. We can use letrec to
achieve the desired scoping:

(define M
(λ (d)

(if (member? d exports)
(letrec ([d1 . . . d2 . . . ]

[d2 . . . ])

2



(case d
[(d1) d1 ]
[(d2) d2 ]))

(error . . . ))))

Now let’s see how to implement the with construct. Our example module is:

(module RSA
. . .
(export pk encrypt))

We want to use the module in our program:

(with RSA
(encrypt pk message))

One option is to transform every use of RSA’s definitions to function application:

((RSA ’encrypt) (RSA ’pk) message)

With this approach, we need to parse the program and determine which names
are bound in the module (encrypt , pk), and which ones are bound locally (mes-
sage). We’ll use a different approach—we transform with expressions into ex-
pressions that use let to bind the module definitions locally:

(let ([pk (RSA ’pk)]
[encrypt (RSA ’encrypt)])

(encrypt pk message))

Now back to our module definitions—we can turn all of the imports into withs.
The module:

(module M
(import M1 M2 . . . Mk)
. . . )

is rewritten as:

(define M
(λ (d)

(with M1
. . .

(with Mk
. . . ))))

This tranlsation is inefficient: the withs become lets, which bind variables to
all the public definitions of M1 through Mk every time you access a definition
in M . If we move the with expressions outside of the λ, then Scheme binds
these names exactly once:

(define M
(with M1

. . .

3



(with Mk
(λ (d)

. . . ))))

Good news: now we have a basic module system! Bad news: it’s fairly useless.
There are several desirable properties this module system does not have:

1. multiple instantiation

2. mutually recursive modules

3. separate implementation and interface

4. separate compilability

People increasingly define the collection of criteria by the term component. Have
we seen any components so far in this course? Does a function meet these
criteria?

1. We can instantiate a function multiple times:

(define (make-function x )
(λ (. . . ) . . . ))

2. We can define mutually recursive functions using letrec.

3. A function’s type is its interface.

4. Separate compilability is not clear—for λ without free variables, yes; for
λ with free variables, no.

How about an object in Java? It also has the four properties—for separate
interface and implementation, consider Java’s interfaces.

These four criteria (plus one more) define components. The additional prop-
erty is external linking. In our module system, linking is done via the import
statement, which is internal to the module. C relies on an external program, ld,
to link modules. This model is much more powerful because it allows you to link
to different libraries at different times. (We saw an example of this utility in the
conservative GC lecture.) External linking is useful because it allows you to re-
place implementations; there may be some tradeoff in different implementations
that you wish to exploit. Note that the external linking criterion subsumes the
third criterion above, separation of implementation from interface. With exter-
nal linking, you need to have the interface at compile time, or else you can’t do
separate compilation.

Classes don’t meet this external linking requirement, since you have to spec-
ify the superclass when you define the class. A superclass can have many sub-
classes, but asymmetrically, a potential subclass have only one superclass. So,
you could make the superclass a parameter:

(define C
(λ (super)

4



(class extends super
. . . )))

Classes of this form all called mixins. Mixins can be externally linked to their
superclasses, so they are classes that meet component properties.

Other systems that meet the component requirements are ML’s functorial
module system and the unit system in PLT Scheme.

5


