
Today’s Lecture Notes for cs173

sk and dbtucker

September 15, 2000

Topic: Lambda.

Adding functions to our language

We want to have functions in our language, so we extend the BNF:

L ::= 〈number〉
| 〈id〉
| (〈L〉 + 〈L〉)
| (〈L〉 * 〈L〉)
| (fun (〈id〉) 〈L〉)
| (〈L〉 (〈L〉))

The second-to-last line represents a function of one parameter and a body,
and the last line represents the application of a function to an argument. (Note
that all our functions take a single argument.)

Now that we have functions, we don’t need the let form anymore. To see
this, consider the expression:

(let (x 3) (x + 4))

is equivalent to:

((fun (x) (x + 4)) (3))

In both cases, the variable x is bound to 3 in the body (x + 4). (In fact, Scheme
does exactly this conversion—when it sees (let ((x v)) body), it changes the
form to ((lambda (x) body) v).)

We need to extend the abstract datatype as well; we call it AFunExp:

(define-datatype AFunExp AFunExp?
[numE (n number?)]
[varE (v symbol?)]
[addE (lhs AFunExp?)

(rhs AFunExp?)]
[multE (lhs AFunExp?)

(rhs AFunExp?)]

1



[funE (param symbol?)
(body AFunExp?)]

[appE (fun AFunExp?)
(arg AFunExp?)])

Note that expressions like: (3 (4)) and (5 + (fun (x) x)) are legal syn-
tactically—they can be parsed into our datatype representation. However, these
expressions are clearly nonsense, so we will assume that our input does not
contain such forms.

Where do the expressions varE, funE, and appE fall in terms of values and
computations? appE is a computation, since it has to evaluate the function
applied to its argument. funE is a value, since we don’t do anything with it
when we evaluate it. Here’s what we have:

• values: numE, funE

• computations: addE, multE, appE

varE doesn’t fall nicely into either category since it’s just a placeholder for
values. On one hand, we not computing anything for varE, just substituting
into it. On the other hand, it’s certainly not a value that a program can return.

A substitution interpreter

Now we can write an interpreter which uses substitution. We use the subst
function written previously, and assume the functions numE+ and numE*.

;; interp : AFunExp -> AFunExp
(define (interp a)
(cases AFunExp a
[numE (n) a]
[varE (v) (error "not closed")]
[addE (le re)
(numE+ (interp le) (interp re))]

[multE (le re)
(numE* (interp le) (interp re))]

[funE (param body) a]
[appE (fe ae)
(apply-fun (interp fe) (interp ae))]))

;; apply-fun : AFunExp * AFunExp -> AFunExp
(define (apply-fun fv av)
(cases AFunExp fv
[funE (param body)
(interp (subst body

param
av))]

[else (error "can only apply functions")]))

2



Three notes on this interpreter:

1. Note that when interp comes across a funE, it just returns the function
as is.

2. The interesting case is appE. The function apply-fun takes a function
value and an argument value, substitutes the argument for the parameter
in the body of the function, and then calls interp on the new expression.
Since the argument is evaluated before it is substituted, the evaluation is
eager.

3. It only makes sense to apply a function value to an argument, so trying
to apply anything else is an error (the final line of apply-fun).

An environment-passing interpreter

For the environment-passing interpreter, it will be useful to have a separate
datatype for values:

(define-datatype Value Value?
[numV (n number?)]
[funV (param symbol?)

(body AFunExp?)])

We assume we have functions numV+ and numV* written over this datatype.
Now let’s take a crack at the interpreter, using the functions for delayed

substitution we developed before:

;; interp : AFunExp * DSub -> Value
(define (interp a d)
(cases AFunExp a
[numE (n) (numV n)]
[varE (v)
(get-sub v d)]

[addE (le re)
(numV+ (interp le d) (interp re d))]

[multE (le re)
(numV* (interp le d) (interp re d))]

[funE (param body)
(funV param body)]

[appE (fe ae)
(apply-fun (interp fe d) (interp ae d) d)]))

;; apply-fun : Value * Value * DSub -> Value
(define (apply-fun fv av d)
(cases Value fv
[funV (param body)

3



(interp body
(new-sub param

av
d))]

[else (error "can only apply functions")]))

This appears to be right, but we haven’t taken into account how the delayed
substitution works. For example, consider this expression (we use lets just for
clarity):

(let (x 3)
(let (f (fun (y) (x + y)))
(let (x 4)
(f (5)))))

What are the delayed substitutions at each step?

0. Before evaluation, d = {}.
1. After the first let, d = {x 7→ 3}.
2. After the second, d = {x 7→ 3, f 7→ (fun (y) (x + y))}.
3. After the third, d = {x 7→ 4, f 7→ (fun (y) (x + y))}.
4. The body of f—that is, (x + y)—is then evaluated under d = {x 7→

4, y 7→ 5, f 7→ (fun (y) (x + y))}.
Thus, the expression evaluates to 9. The reason is that the variable x in the
function was bound to the second x in the program (4) instead of the first x (3).

Is 9 the correct answer? Well, it depends on what we mean by correct. In
most languages, we would expect the x in f to be bound by the nearest enclosing
definition of x—the first one—and 8 would be the answer. This is called static
binding, because the variable is bound in the environment where the function
is defined. The substitution intepreter would also compute 8, so in some sense
this is correct.

On the other hand, older versions of Lisp used dynamic binding, as the above
interpreter does. Under these semantics, a variable is bound in the environment
where the function is applied.

We would like our environment-passing interpreter to use static binding. To
do this, we need to “remember” the current delayed substitutions (i.e. enviro-
ment) whenever we evaluate a function. Thus, we modify the Value datatype
to carry around the environment:

(define-datatype Value Value?
[numV (n number?)]
[funV (param symbol?)

(body AFunExp?)
(env DSub?)])

4



Now we rewrite interp and apply-fun to store and recall these saved substi-
tutions:

;; interp : AFunExp * DSub -> Value
(define (interp a d)
(cases AFunExp a
[numE (n) (numV n)]
[varE (v)
(get-sub v d)]

[addE (le re)
(numV+ (interp le d) (interp re d))]

[multE (le re)
(numV* (interp le d) (interp re d))]

[funE (param body)
(funV param body d)]

[appE (fe ae)
(apply-fun (interp fe d) (interp ae d))]))

;; apply-fun : Value * Value -> Value
(define (apply-fun fv av)
(cases Value fv
[funV (param body env)
(interp body

(new-sub param
av
env))]

[else (error "can only apply functions")]))

We made three modifications:

1. For the funE case in interp, we now create a funV which stores the current
environment.

2. In apply-fun, the body is interpreted in the environment stored in funV
plus the binding of the function parameter.

3. Note that apply-fun no longer needs a environment parameter.

When evaluating functions, we create a package consisting of the function
definition and the current environment. This package is called a closure.

5


