
Today’s Lecture Notes for cs173

sk and dbtucker

October 13, 2000

Type Soundness

What can we say about programs that are well-typed? We want a guarantee
that the type of a program, as computed by the type checker, will be the type
of the result when the interpreter evaluates the program. We call this property
type soundness:

Type Soundness (version #1): ∀p ∈ Programs, if the type of p
is τ , then p will evaluate to a value of type τ .

What do we mean when we say a value has type τ? A type is a syntactic, static
entity, so it’s meaningless to talk about the “type” of a value—a value is after all
just some sort of sequence of bits on hardware (in most cases). Before we type
checked the program, we agreed on some relation between values and types; for
example, 1 has type num, and true has type bool. We should explicitly refer to
this compact when defining our property:

Type Soundness (version #2): ∀p ∈ Programs, if the type of p
is τ , then p will evaluate to a value which by our prior compact has
type τ .

Type soundness relates a type checker and an evaluator. A type system is
said to be sound with respect to an evaluator if the type soundness property
holds.

Not all languages have sound type systems. For example, C’s type system
is not sound with respect to its evaluator.

Other type errors

So is our type system sound with respect to our interpreter? What happens
if we try to evaluate (first (empty))? This expression should cause a type
error, since it cannot be given any meaningful value. However, according to our
type rules:

(first (empty)) : num

1



since

first : nlist -> num
empty : nlist

So in order for type soundness (version #2) to hold, (first (empty)) must
evaluate to a number.

What can we do when we interpret (first (empty))? Here are some pos-
sibilities:

• return an error value, such as -1. This is a bad idea because it will cause
hard-to-catch bugs. For example, ((first (empty)) + 42) will evaluate
to the number 41, which doesn’t make any sense. Also, if you test for
emptiness using (equal? (first (L)) -1), the program will act cor-
rectly unless you have a list containing the number -1.

• go into an infinite loop. This is not a viable solution for a programming
language, but we’ll discuss later why we might suggest this.

• throw an exception. This the right thing to do, since it explicitly declares
this expression to be an error condition, and notifies the programmer of
the error.

We’ll define our interpreter so that it throws an exception when it evaluates
(first (empty)). Now we have to rewrite our claim:

Type Soundness (version #3): ∀p ∈ Programs, if the type of
p is τ , then p will either evaluate to a value, which by our prior
compact has type τ , or raise an exception.

Recursion

What happens if we add the rec construct to our typed language? For example,
how do we type check the following expression?

(rec length
(fun (L : nlist)
(if (empty? L)

0
(1 + (length (rest L)))))

(length (cons 1 (cons 2 empty))))

As before, we need to specify the type of the argument to the function. But we
still can’t type-check the body of the function, since it calls itself, and we don’t
know its return type. Therefore, we also need to specify the return type. We’ll
annotate length with its type:

2



(rec length : (nlist -> num)
(fun (L : nlist)
(if (empty? L)

0
(1 + (length (rest L)))))

(length (cons 1 (cons 2 empty))))

Rather than specify the type twice, we’ll revise the syntax of rec so that it has
four parts—the function name, the function argument, the function body, and
the expression body. Now we’ll only specify the type with the function name:

(rec length : (nlist -> num)
L
(if (empty? L)

0
(1 + (length (rest L)))))

(length (cons 1 (cons 2 empty))))

Now we can type check rec expressions. First, we need to check that that
the function body has the declared type. Second, we define the type of the
expression to be the type of the expression body. The rule is:

Γ[v← (q1 → q2)][a← q1] ` f : q2 Γ[v← (q1 → q2)] ` b : t

Γ ` (rec v : (q1 → q2) a f b) : t

Note that we’ve extended Γ with v twice, once for the function body and once
for the expression’s body.

By adding the rec expressions and a type rule for them, we’ve now added
expressiveness to our typed language. Consider the length example, except
with the call to rest removed:

(rec length : (nlist -> num)
(fun (L)
(if (empty? L)

0
(1 + (length L))))

(length (cons 1 (cons 2 empty))))

This expression is still well-typed, but when the interpreter tries to evaluate it,
the evaluation will not terminate. Version #3 of the type soundness property
has to be rewritten to take into account programs that diverge:

Type Soundness (version #4): ∀p ∈ Programs, if the type of p
is τ , then p will, if it terminates, evaluate to a value which by our
prior compact has type τ , or raise an exception.

In our original type system, without the rec construct, every computation
terminated. We gave an informal argument which said that every function
application “uses up” an arrow, and since types have to be finite, we can’t have

3



an infinite number of function applications. So how does the type rule for rec
allow infinite computations? We noted above that we extend Γ with the type
of v twice. The second extension, for the rec expression’s body, is what allows
a recursive use to begin. The first extension, to the function body, is in a scope
where the rec-bound identifier is bound. (This is different from the scoping rule
for let.) This allows recursion, even infinite recursion, to proceed.

Now we can revisit an earlier question—what to do with the expression
(first (empty)). Remember that we said it might make sense to define the
evaluation of this expression to be an infinite loop. The reason is that we can
assign the expression type num, and the type soundness property (version #4)
still holds because the evaluation of the expression doesn’t terminate.

We don’t use this strategy in practice, because it makes programs very dif-
ficult to debug. The only way to tell if an error has occurred is if your program
appears to be in an infinite loop. Furthermore, you can’t distinguish between
different kinds of errors.

Logic

The idea of type soundness comes from the study of logic. We encourage the
interested reader to consult A Mathematical Introduction to Logic, by Herbert
Enderton (1972).

4


