
Compilation with Explicit Stacks

sk and dbtucker

November 13, 2000

The first step in our compilation process was to convert the program to
CPS, which made the stack explicit. The second step was to pass arguments in
registers, so that function calls could be modeled by jumps in assembly language.
We are left with one construct, cons , that we need to translate to a lower level.
We saw that there are two different uses of cons in our filter example, one for
the stack representation, and one for the list being passed to filter . Today we’ll
see how to deal with the stack-related uses of cons .

So far we have been doing the easy part of the compiler: code generation.
There are two parts that are more difficult:

1. The run-time system is responsible for providing primitive operations
(even? , cons , car , &c.), some abstraction for memory management, and
an interface to the operating system (for I/O, process management, &c.).

2. Optimization, which we won’t cover in this course.

The technique we are using is compilation by transformation. There are
several phases in this transformation; the result of each phase is a Scheme
program that uses less sophisticated constructs, and relies more on ones that
can be mapped directly to the machine. Furthermore, each resulting program
is guaranteed to be semantically equivalent to the original program.

The stack

We will model the stack using a vector, which we treat as a chunk of memory.
The stack pointer indicates the current top of the stack:

(define Stack (make-vector 100))
(define Stack-Ptr 0)

We want to rewrite the Push- and Pop- functions so that they manipulate this
stack. Recall the previous definition of Push-test-pred :

(define (Push-test-pred f/k l Stack)
(cons (list ’Push-test-pred f/k l)

Stack)))

1



Instead of making a list and cons ing that onto the stack, we’ll add each item
individually. The new version of Push-test-pred mutates the global stack and
updates the stack pointer:

(define (Push-test-pred f/k l k)
(vector-set! Stack (+ 0 Stack-Ptr) ’Push-test-pred)
(vector-set! Stack (+ 1 Stack-Ptr) f/k)
(vector-set! Stack (+ 2 Stack-Ptr) l)
(set! Stack-Ptr (+ Stack-Ptr 3)))

The definition of Push-cons-first is similar. Now let’s rewrite Pop-common:

(define (Pop-common v k)
(if (zero? Stack-Ptr)

v
(let ([tag . . . ])

. . . )))

We have a problem here—if the top frame’s tag is ’Push-test-pred, it will be the
third element from the top of the stack, but if the tag is ’Push-cons-first, it will
be second from the top. We really should have put the tag on the top of the
stack:

(define (Push-test-pred f/k l k)
(vector-set! Stack (+ 0 Stack-Ptr) f/k)
(vector-set! Stack (+ 1 Stack-Ptr) l)
(vector-set! Stack (+ 2 Stack-Ptr) ’Push-test-pred)
(set! Stack-Ptr (+ Stack-Ptr 3)))

If we do the same with Push-cons-first , the tag is always the top element of the
stack (i.e., one less than the value of the stack pointer). Now we can continue
writing Pop-common:

(define (Pop-common v k)
(if (zero? Stack-Ptr)

v
(let ([tag (vector-ref ! Stack (− Stack-Ptr 1))])

(case tag
[(Push-test-pred)
(let ([f/k (vector-ref Stack (− Stack-Ptr 3))]

[l (vector-ref Stack (− Stack-Ptr 2))])
(if v

(filter/k f/k (rest l) (Push-cons-first l ’dummy))
(filter/k f/k (rest l) ’dummy)))]

[(Push-cons-first)
(let ([l (vector-ref Stack (− Stack-Ptr 2))])

(Pop-filter (cons (first l) v) ’dummy))])))

This version of Pop-common isn’t correct. Notice that since we are using a
global stack, we just pass a dummy value (instead of rest-frames) as the third

2



argument to filter/k . However, when filter/k is called, Stack-Ptr will still point
to the top frame of the stack, rather than the second frame from the top (which
corresponds to rest-frames). We need update the value of Stack-Ptr so that it
refers to the second frame from the top (in other words, we pop the top frame
of the stack). The correct version of Pop-common is:

(define (Pop-common v k)
(if (zero? Stack-Ptr)

v
(let ([tag (vector-ref ! Stack (− Stack-Ptr 1))])

(case tag
[(Push-test-pred)
(let ([f/k (vector-ref Stack (− Stack-Ptr 3))]

[l (vector-ref Stack (− Stack-Ptr 2))])
(set! Stack-Ptr (− Stack-Ptr 3))
(if v

(filter/k f/k (rest l) (Push-cons-first l ’dummy))
(filter/k f/k (rest l) ’dummy)))]

[(Push-cons-first)
(let ([l (vector-ref Stack (− Stack-Ptr 2))])

(set! Stack-Ptr (− Stack-Ptr 2))
(Pop-filter (cons (first l) v) ’dummy))])))

Note that we made a similar modification for the Push-cons-first case.
We have covered the code on page 1 of today’s handout. Here are short

explanations of the further changes we made to the program:

• On page 2, we’ve removed the k argument (e.g. the third argument to
filter/k . We saw that this argument is completely useless since we’re now
using Stack .

• On page 3, we break Pop-common into three functions: Empty, filter/split/Push-
test-pred , and filter/split/Push-cons-first . Now instead of pushing a tag
(’Empty, ’Push-test-pred, or ’Push-cons-first) onto the stack, we push a ref-
erence to the corresponding function. Then Pop-common simply pulls the
top function off the stack and invokes it.

• On page 4, we return values through the stack.

3


