
Let-Based Polymorphism: Il buono, il brutto, il

cattivo

sk and dbtucker

November 3, 2000

Let-based polymorphism

We’ve seen an algorithm for type checking programs that use implicit polymor-
phism. What is the type judgment for let?

Γ ` e : τ ′ Γ[v : τ ′] ` b : τ

Γ ` (let (v e) b) : τ

We don’t need to introduce a type variable for v because we can immediately
determine that the type of e is τ ′.

However, this rule doesn’t allow us to use v polymorphically. Consider the
following expression:

(let (id (λ (x ) x ))
(if (id true)

(id 5)
(id 6)))

Since id is a function, it has some arrow type:

type(id) = α→ β

type(x) = α

The body is just x, so:
β = type(x) = α

Now look at the applications of id . Because we apply it to true, we know:

α = bool

We also apply id to 5 (and 6), so:

α = num

Now you can see the problem: by transitivity, we have bool = num. Therefore,
this expression won’t type check. The problem is that once we determine that

1



(λ (x ) x ) has type α → α, we are stuck with the type variable α for every use
of id in the body.

Remember the solution we suggested in a previous lecture—to just substitute
e for v in the body b, and then type check the resulting body. More formally,
the type judgment is:

Γ ` b[v ← e] : τ

Γ ` (let (v e) b) : τ

In our above example, the let-expression would be expanded to:

(if ((λ (x ) x ) true)
((λ (x ) x ) 5)
((λ (x ) x ) 6))

This expression will type check, because every time we use (λ (x ) x ), we get
a new set of type variables. That is, the first (λ (x ) x ) will have type α → α,
the second β → β, and the third γ → γ. Thus, the constraints from function
application would be:

α = bool

β = num

γ = num

and there would not be any conflicts.
The problem with this approach is that it’s slow—it can make the program

exponentially larger. Consider an expression with nested lets:

(let (x (let (y (let (z 3)
(z + z )))

(y + y)))
(x + x ))

After substitution, the expression will be:

(((3 + 3) + (3 + 3)) + ((3 + 3) + (3 + 3)))

For an expression of n such nested lets, the expansion will contain 2n numeric
terms.

For the expression (let (v e) b), we want to introduce fresh type variables
for v every time we use it in b. After we determine that e has some type τ ′, we
will bind v to a special type CLOSE(τ ′) when type checking the body:

Γ ` e : τ ′ Γ[v : CLOSE(τ ′)] ` b : τ

Γ ` (let (v e) b) : τ

The idea is when we use this special type, we will rename all the type variables
with fresh names. The type judgment is:

Γ ` e : CLOSE(τ ′)
Γ ` e : τ where τ = τ ′ with fresh type variables

2



Now we can return to our example:

(let (id (λ (x ) x ))
(if (id true)

(id 5)
(id 6)))

First, the type checker will determine that id has type α→ α. Then, Γ will be
extended with id : CLOSE(α → α) when type checking the body. Now id will
have a different type every time it is used in the body: α1 → α1 when applied
to true, α2 → α2 when applied to 5, and α3 → α3 when applied to 6. Thus, no
conflicts occur in the constraint equations.

There is one subtlety we are missing, though. When we rename all the type
variables in a CLOSE type, we may be renaming variables that were not created
in the let-expression. Consider the following expression:

(λ (y)
(let (f (λ (x ) y))

(if (f true)
(+ (f false) 5)
6)))

This function should not type check, since the return value of f is used as both
a bool in f true, and as a num in f false. If we apply the entire expression to
true, then there will be a type error at +; similarly, if we apply the expression
to 42, there will be a type error at if. However, this function does type check
in our current type system. Let’s see why.

We introduce type variables β for y and α for x . So, in the body of the let,
f will have type CLOSE(α→ β). At its first application (f true), f will get type
α1 → β1, and we will derive the constraints:

α1 = bool since true is a bool
β1 = bool since the first subexpression of if is a bool

At its second application (f false), f will get type α2 → β2, and we have these
constraints:

α2 = bool since true is a bool
β2 = num since + takes nums as arguments

Since β1 and β2 are distinct type variables, there are no conflicts in the constraint
equations; thus, the function type checks. The problem is that we renamed β
for each use of f , even though β was not created in the let-expression.

We only want to rename type variables that were created at let. To keep
track of which type variables already existed, we need to store the type envi-
ronment Γ in the CLOSE type. So, we change our type judgment for let to be
the following:

Γ ` e : τ ′ Γ[v : CLOSE(τ ′, Γ)] ` b : τ

Γ ` (let (v e) b) : τ

3



When we use the CLOSE type, we only rename those type variables which did
not already exist in the type environment:

Γ ` e : CLOSE(τ ′, Γ′)
Γ ` e : τ

where τ = τ ′ with fresh type variables for those not in Γ′

Applying these rules in the above example, we see that the first use of f will
have type α1 → β, and the second use will have type α2 → β. Now we derive
the constraints:

β = bool

β = num

which gives us the conflict.
This kind of polymorphism, called let-based polymorphism, is stronger than

the kind we’ve seen so far. Before, our notion of polymorphism included type
variables, but we could not apply a function to values of different types in the
same context. Let-based polymorphism gives us this power; as we saw above,
we could apply id to both a bool and a num in the same context. In ML, the
top-level is basically a series of nested lets, which gives you polymorphism in a
seemingly interactive setting.

Since we can use let to bind a polymorphic function, can we also do so using
λ? Consider the following expression:

(λ (f )
(if (f true)

(f 5)
6))

As in the example with let, we use the function f polymorphically. However, f
is not bound to a value immediately, as it was in the let-expression; f is only
bound when this expression is applied, which might occur quite a bit later. So,
how can we type check this function?

Our original approach to let-based polymorphism was to substitute for the
bound variable into the body of the let-expression, and then type check the
resulting expression. As an optimization, we instead created a CLOSE type,
and renamed variables in the CLOSE type upon use.

This idea won’t work with λ. Since we don’t know what f is bound to, we
can’t substitute for f in the body of the λ-expression. Thus we rely on our
current type rules, which dictate that the expression contains a type conflict,
and reject the above expression.

Boxes

Let’s take a look at using let with boxes. Recall that operations on boxes are
polymorphic functions:

4



box : α → ref(α)
unbox : ref(α) → α
set-box! : ref(α) × α → ref(α)

Now consider the following expression:

(let (f (box (λ (x ) x )))
(set-box! (f (λ (y) (+ y 5)))
((unbox f ) true)))

When evaluated, this expression will have a type error because + will be called
with its first argument being true. However, this expression does type check
under our current type system. To see why, remember that f will have type
CLOSE(ref(α→ α), {}) in the body of the let, so α will be renamed at each use.

The moral is that the näıve type rule for references, when combined with
let-polymorphism, breaks down. The simplest fix is to not allow boxes on the
right-hand side of let.

5


