
Today’s Lecture Notes for cs173

sk and dbtucker

September 22, 2000

Theme: Having fun (in your language) is harder than it seems.

Eager vs. lazy semantics

Question 2 of homework 2 asked for an expression that shows the difference
between eager and lazy semantics. To recall: “The two computations may
differ in any way, so long as if they both yield a value, the value must not be
the same number or a closure that produces the same value for all values it is
applied to.”

There were 3 popular answers:

1. (let (x (1 / 0))
0)

Under eager semantics, (1 / 0) is evaluated, which produces an error.
Under lazy semantics, (1 / 0) is never evaluated, since x is not present
in the body of let, 0. Thus the result is 0.

2. (let (x <infinite loop>)
3)

If we can write an <infinite loop> in our language, then this expression
will not terminate under eager semantics, but will evaluate to 3 under lazy
semantics.

3. (let (y 5)
(let (x y)

(let (y 4)
x)))

WRONG! This expression does not meet the requirements—it evaluates
to 5 under both the eager and lazy semantics. The point of confusion is
that an incorrect lazy interpreter will do dynamic binding here, and thus
bind the x to the second y. A correct lazy interpreter will compute this
expression to 5. (Consider how this expression is evaluated lazily using
substitution.)

1



An eager interpreter using Scheme’s lambda

Question 3b asked for an interpreter that (a) uses Scheme’s closures to repre-
sent closures in our language and (b) uses Scheme’s function application to do
application in our language. So, most of the code writes itself; we know that
the appE case is a simple application in Scheme, and that funE must return a
closure (i.e. a lambda expression).

(define (interp a d)
(cases AFunExp a

[numE (n) n]
[varE (v) (get-sub v d)]
[addE (le re) (+ (interp le d) (interp re d))]
[multE (le re) (* (interp le d) (interp re d))]
[funE (param body)

(lambda (argval)
(...))]

[appE (fe ae) ((interp fe d) (interp ae d))]))

The only question is the body of the lambda that is returned in the funE case.
Let’s look at a concrete example:

(interp ((fun (x) (x + y)) (2 + 3)) d)

where d is {y 7→ 1}. So far we know that this expression computes to:

((lambda (argval) (...)) 5)

Now the next thing that will get evaluated is (...), and Scheme will bind
argval to 5 in this expression. What we really want next is to evaluate the
body of the fun—that is, (x + y)—where the environment d is extended by
{x 7→ 5}. In other words:

(interp (x + 1) (new-sub ’x 5 d))

In general, we want to evaluate the body, where param is bound to argval.
Now the code is easy to see:

(define (interp a d)
(cases AFunExp a

[numE (n) n]
[varE (v) (get-sub v d)]
[addE (le re) (+ (interp le d) (interp re d))]
[multE (le re) (* (interp le d) (interp re d))]
[funE (param body)

(lambda (argval)
(interp body (new-sub param argval d)))]

[appE (fe ae) ((interp fe d) (interp ae d))]))

A couple of notes:

2



1. The key observation here is that Scheme itself uses static binding. There-
fore, when we write d in the lambda expression of the funE case, we know
that it will be bound to the value of d when the funE was evaluated.

2. Since we’re using Scheme’s closures as values, we decided to use Scheme’s
numbers as values too.

The story so far

There were 4 interpreters for part 3 of the homework. The two variables are
evaluation strategy (eager vs. lazy) and closure representation (datatypes vs.
Scheme’s lambda).

datatype lambda
eager done 9/15 done today
lazy ? next up

A lazy interpreter using Scheme’s lambda

One is tempted to modify the eager interpreter by simply changing the varE
and appE cases as follows:

[varE (v) (interp (get-sub v d) d)]
[appE (fe ae) ((interp fe d) ae)]

and hoping that all is hunky-dory. Unfortunately, this solution doesn’t quite
work. Let’s look at an example (due to Rob) that fails:

(let (x 3)
(let (f (fun (x) (2 * x)))
(f ((x + 4))))

This expression should evaluate to 14. Following through the evaluation, we
eventually reduce the expression to (2 * (x + 4)) in the environment {x 7→
(x + 4)}. Now we have a problem—this computation will not terminate.

The current problem is the same one we had when we introduced delayed
substitutions: some expressions are not being evaluated in the environment in
which they were created. In the above, (2 * (x + 4)) should be evaluated
in the environment {x 7→ 3}. Our solution before was to create closures for
function values; here, we will create closures for all expressions being bound by
lambda application.

The key is this: when we have a function application, we need to capture
the environment for the argument expression (which isn’t evaluated right away).
We create a thunk—a function of no arguments—whose body contains the com-
putation we will do lazily. Then when we encounter a variable, we look it up in
the environment and evaluate the thunk that is returned.

3



(define (interp a d)
(cases AFunExp a

[numE (n) n]
[varE (v) ((get-sub v d))]
[addE (le re) (+ (interp le d) (interp re d))]
[multE (le re) (* (interp le d) (interp re d))]
[funE (param body)

(lambda (argval)
(interp body (new-sub param argval d)))]

[appE (fe ae) ((interp fe d)
(lambda () (interp ae d)))]))

Notes:

1. The thunk is created by (lambda () (interp ae d)).

2. The thunk is evaluated by ((get-sub v d)).

4


