Today’s Lecture Notes for ¢s173

sk and dbtucker
September 27, 2000

Writing an infinite loop

Yesterday we showed how to write an infinite loop in AFun!Exp. To recall, our
first attempt was:

(let (f (fun (@) (£ (@)
£ (M)

This expression fails because it isn’t closed. We can try to fix it by binding an
f above:

(let (f 0)
(let (£ (fun (@) (£ @)
£ (M)

But the f inside the function is still bound to 0, so we get an error upon applying
0 to 7. Finally, we decided to mutate the f:

(let (£ 0)
[(set £ (fun (m) (f (n))))
M

Now the f in the function refers to a box, but the contents of that box are set
to the function. So the recursion works.
Let’s look at the example a bit more carefully:

1. The initial environment is:

Ey = (fresh-sub)

2. The let expression creates a new environment that binds £ to 0 in its
body:
Fi = (new-sub ’f (numV 0) Ej)

3. When the fun is evaluated, a closure is created which captures the envi-
ronment Fy:
(funV ’n (...) E7)



4. The set expression then changes F1, so we get the following equivalence:

E; = (new-sub ’f (funV ’n (...) E1) Ep)

Looking at this last equality, we see that we need an environment that refers
to itself. If we let:

P(E) = (new-sub ’f (funV ’n (..) E) Ep)
the equation for E; can be rewritten as:
E, = P(Ey)

F is called the fized point of P.

Fixed point digression

It’s not obvious that a function has a unique fixed point. Consider these three
functions:

1. f(x) = x has infinitely many fixed points.
2. f(x) = 0 has exactly 1 fixed point.
3. f(z) = x + 1 has no fixed points.

However, P does have a fixed point.

Adding recursive bindings to our language

We often use recursive functions when writing programs, so we’ll add a construct
rec to our language' to explicitly support recursion:
L == ...
| (rec (id) (L) (L))

For example, we can write an infinite loop as follows:

(rec £ (fun (x) (f (x)))
(f AN

The variable f is bound to the function, and the environment in the function’s
closure includes this binding.
We add a recE variant to the datatype for the abstract syntax tree:

(define-datatype AFunRecExp AFunRecExp?
[varE (v symbol?)]

1Similar to Scheme’s letrec.




[numE (n number?)]
[addE (lhs AFunRecExp?)
(rhs AFunRecExp?))
[funE (param symbol?)
(body AFunRecExp?))
[appE (fun AFunRecExp?)
(arg AFunRecEzp?))
[recE (var symbol?)
(fun AFunRecExp?)
(body AFunRecExp?)])

Now we need to write the recF case in the interpreter:
[recE (var fun body) ...]

Remember our discussion above—we want to interpret body in the environment
given by the fixed point of P. Let’s suppose we have a function fiz-env which
computes the desired fixed point:

[recE (var fun body) (let ([P ...])
(interp body (fiz-env P)))]

Next we fill in P, which is the environment transformer we defined above:

[recE (var fun body) (let ([P (lambda (env)
(new-sub var
(funV (get-funE-param fun)
(get-funE-body fun)
env)

d))))
(interp body (fiz-env P)))]

We still have to write the function fiz-env which computes the fixed point of
the environment transformer P. If we use the function representation for envi-
ronments, we can use Scheme’s letrec to define fiz-env:

(define (fiz-env P)
(letrec ([rec-env (P (lambda (id)
: (get-sub id rec-env)))])

How does fiz-env work? We define a new environment rec-env which contains
the binding for the recursive function. The environment in the recursive func-
tion’s closure is (lambda (id) (get-sub id rec-env)); in other words, it just looks
up the identifier in rec-env. Thus, the recursive function can refer to itself.

Another approach to writing fiz-env is to use mutation. We can create a
dummy value as the closure’s environment, and then apply the transformer P
to get the environment in which to evaluate body (call it rec-env). Then we
mutate the dummy value to be rec-env, so the function closure’s environment
contains the binding for the function. The code is:



(define (fiz-env F)
(letx ([set-env (box (fresh-sub))]
[rec-env (F set-env)])
(set-box! set-env rec-env)
rec-env))

(The letx expression is just shorthand for nested let expressions.) We also
have to modify two other parts of the interpreter because we use boxes to
implement mutation: environments are boxed when closures are created in funF,
and environments are unboxed when calling interp in apply-fun.



