
Today’s Lecture Notes for cs173

sk and dbtucker

October 11, 2000

Topic: Types

Types

Why do we want well-typed programs anyway? Robin Milner, who won a Turing
Award in part for his work in type theory, proved a theorem regarding the safety
of well-typed programs. Milner’s theorem is often summarized as:

Well-typed programs do not go wrong.

In other words, if a program type-checks, there will be no run-time errors.

Pairs

We can add pairs to our language:

L ::= . . .
| (pair 〈L〉 〈L〉)

If v1 and v2 are values, then (pair v1 v2) is also a value in our language. The
evaluation rule for pairs is:

e1; E ⇒ v1 e2; E ⇒ v2

(pair e1 e2); E ⇒ (pair v1 v2)

We also want to type-check pairs, so we extend our type grammar to include
pair types:

τ ::= num
| bool
| τ → τ
| 〈τ, τ〉

The type grammar defines the set of all possible types, including num, bool,
bool → num, (num → bool) → bool, 〈num, bool〉, 〈〈num, num〉, bool → bool〉,
and many, many more.

1



To create pair types, we first examine the types of the subexpressions:

Γ ` e1 : t1 Γ ` e2 : t2
Γ ` (pair e1 e2) : 〈t1, t2〉

In other words, if the first item of the pair has type t1, and the second item has
type t2, then the pair itself has type 〈t1, t2〉.

We also need primitives to extract the components of pairs. Assume we have
a primitive function π1 that returns the first component, and a primitive π2 that
returns the second:

π1 : 〈t1, t2〉 → t1

π2 : 〈t1, t2〉 → t2

The evaluation rule for π1 is:

e; E ⇒ (pair v1 v2)
π1(e); E ⇒ v1

Lists

Now we want to develop a representation for lists. We can represent lists using
nested pairs; for example, the list of numbers 1, 2, and 3 would be:

〈1, 〈2, 〈3, 4〉〉〉

Can we write a function first that takes a list and returns the first element?
Here’s one attempt:

first ≡ (fun (x) π1(x))

This attempt doesn’t even match the syntax of our typed language, since the
function’s argument lacks a type annotation. Here’s another attempt:

first ≡ (fun (x : 〈num, 〈num, 〈num, num〉〉〉) π1(x))

This function, when applied to the list 〈1, 〈2, 〈3, 4〉〉〉, will correctly return the
first element (1).

However, what if we want the first element of 〈1, 〈2, 3〉〉? The type annotation
on the argument of first requires that the list have length four, so we have to
write an entirely new function to deal with lists of length three:

first′ ≡ (fun (x : 〈num, 〈num, num〉〉) π1(x))

This solution is not general—we want a single function first that can operate on
lists of any length.

To overcome this problem, we will add Scheme-like lists to our language; for
example:

(cons 1 (cons 2 (cons 3 empty)))

2



is the list of numbers 1, 2, and 3. We extend the language grammar to include
the list constructors cons and empty, as well as the primitives first and rest:

L ::= . . .
| empty
| (cons 〈L〉 〈L〉)
| (first 〈L〉)
| (rest 〈L〉)

Additionally, we’ll add a list type to our type grammar:

τ ::= . . .
| list(τ)

Note that in order to be able to do type checking, we require that all elements
of a list have the same type.

We can write a rule to type-check cons—we just make sure that the tail
is a list, and that type of the head matches that of the tail’s elements. More
precisely:

Γ ` e1 : t Γ ` e2 : list(t)
Γ ` (cons e1 e2) : list(t)

The primitive functions first and rest have the following types:

first : list(τ) → τ

rest : list(τ) → list(τ)

Now what is the type of empty? We know it’s a list of something, but is it
a list(num), or list(bool), or list(bool → num), or what? In truth, we want it to
have type list(α) where α can match any type—but, we don’t have any types
that look like this (remember the type grammar).

We’re stuck. For now, we’ll have to make empty some particular kind of list,
say a list of numbers. We’ll call the type nlist:

empty : nlist

Now we have to rewrite the type rule for cons, since we only have number lists:

Γ ` e1 : num Γ ` e2 : nlist

Γ ` (cons e1 e2) : nlist

The types of first and rest also change:

first : nlist → num

rest : nlist → nlist

3



Termination

Let’s write an infinite loop in our typed language. Before we had types, we
could write the following expression:

((fun (g) (g (g))) ((fun (f) (f (f)))))

We can reduce this expression by substituting the argument (fun (f) (f (f)))
for the parameter g in the body (g (g)), which gives us:

((fun (f) (f (f))) ((fun (f) (f (f)))))

Note that this expression is the same as the first one (other than the renaming
of g to f). In fact, if we reduce this expression again, we get:

((fun (f) (f (f))) ((fun (f) (f (f)))))

Since this expression just reduces to itself, it will never finish computing to a
value (i.e., it’s an infinite loop, it diveges, it runs forever).

In the typed version of our language, however, we have to assign a type t to
the function’s argument:

(fun (f : t) (f (f)))

Look at the first f in the body. It is used in the function position of an applica-
tion, so its type t, must be ? → ?. The argument to this function is the second
f in the body. Since f ’s type is t, this means the argument position of t must
be t itself, that is,

t = t → ?

However, we don’t have any types in our set that satisfy this equality.
Looking at this equality a bit more closely, we see that substituting (t → ?)

for the t in the right-hand side, we get:

t = (t → ?) → ?

This type would work if the recursion only went two levels deep. If we substitute
again, we get:

t = ((t → ?) → ?) → ?

This type would work for three levels of recursion. We can continue on in this
fashion; however, we won’t be able to write down a type for an unbounded
number of recursions.

In fact, we can’t write down an infinite computation as a well-typed program
in our language (proof not given). This property is called strong normalization,
and can be useful in applications which require that computations terminate.
Some examples are:

1. languages for real-time systems

2. program linkers

4



3. packet filters in network stacks

4. programs in routers

5. configuration files for applications

5


