
Today’s Lecture Notes for cs173

sk and dbtucker

October 6, 2000

Semantics

We have been writing interpreters in Scheme in order to understand various fea-
tures of programming languages. What if we want to explain our interpreter to
someone else? If that person doesn’t know Scheme, we can’t communicate how
our interpreter works. It would be convenient to have some common language
for explaining interpreters. We already have one—math!

Let’s try some simple examples. If our program is a number n, it just
evaluates to some mathematical representation of n:

n⇒ pnq

How about addition?
(le + re)⇒ ple + req

This definition doesn’t work, since le and re might have to be evaluated them-
selves. If they evaluate to values, then we can compute the result:

le ⇒ lv re ⇒ rv
(le + re)⇒ plv + rvq

Now let’s do functions. They evaluate to closures, which we represent as tuples
in math:

(fun (i) e)⇒ 〈i, e, ?〉
We have a problem—the closure needs an environment. We can represent the
environment as a function E from variables to values. We need to rewrite our
rules to use the environment:

n; E ⇒ pnq
le; E ⇒ lv re; E ⇒ rv
(le + re); E ⇒ plv + rvq
(fun (i) e); E ⇒ 〈i, e, E〉

Now that we have an environment, we can evaluate variables:

var ; E ⇒ E(var )

1



The only rule that remains is application. This one is a bit tricky. We need
to evaluate the function expression and argument expression, then evaluate the
body of the function in an extended environment (i.e. the closure environment
plus the binding of the function’s argument):

fe; E ⇒ 〈i, e, E ′〉 ae; E ⇒ av e; E ′[i← av ]⇒ appv
(fe (ae))⇒ appv

That’s it. Now we have completely described our interpreter using math.
Let’s see what happens when we evaluate ((fun (x) (x + x)) ((3 + 4))):

(fun (x) (x + x)); {} ⇒ 〈x, (x + x), {}〉
3; {} ⇒ p3q 4; {} ⇒ p4q

(3 + 4); {} ⇒ p7q
x; {x 7→ 7} ⇒ p7q x; {x 7→ 7} ⇒ p7q

(x + x); {x 7→ 7} ⇒ p14q
((fun (x) (x + x)) ((3 + 4))); {} ⇒ p14q

Notice that the computation is represented as a tree in our mathematical system.
In the following sections, we’ll also use conditional expressions. Here are the

rules:
true; E ⇒ #t

false; E ⇒ #f

ce; E ⇒ #t te; E ⇒ tv
(if ce te fe); E ⇒ tv

ce; E ⇒ #f fe; E ⇒ fv
(if ce te fe); E ⇒ fv

Types

Our mathematical definition doesn’t say anything about the result of type
mismatches—say, when we try to apply a number to a number. Real pro-
gramming languages prevent these errors via type checking. Some languages,
such as Scheme, check types dynamically (i.e. at run time). Others, such as
ML, check types statically (i.e. at compile time). We will develop a static type
checker for our language. A type checker is a function which takes a program
(a parse tree) and returns true only if the program will not produce any type
errors when executed.

We want to write a function that assigns a type to an expression (and each
of its subexpressions). The first question is, what is a type? We know that 5 has
type num. The expression (fun (x) (x + 1)) must be some function type. Here’s
a simple definition: a type is a partitioning of the universe of values (based on
what operations are legal).

Let’s write a function τ which takes an expression and returns its type, where
type is either num, bool, or function. For values, this is easy:

τ(n) = num

2



τ(true) = bool

τ(false) = bool

τ(fun (i) e) = function

But what about τ(var)? We need an environment where we can look up var’s
type. We’ll carry around a type environment, denoted Γ, which is a function
from identifiers to types (as opposed to our regular environment, which maps
identifiers to values). In addition, we’ll use some funny notation:

Γ ` n : num

Read the above as “Gamma proves that n has type num.” Let’s make our other
rules look like this:

Γ ` true : bool

Γ ` false : bool

We can only evaluate addition expressions where the two subexpressions have
type num; if so, the result of the addition also has type num:

Γ ` le : num Γ ` re : num
Γ ` (le + re) : num

How about the conditional expression?

Γ ` ce : bool Γ ` te : ? Γ ` fe : ?
Γ ` (if ce te fe) : ?

We don’t know what types the branches have, but for now we’ll assume that
they have to be the same. We use a type variable t to enforce this constraint:

Γ ` ce : bool Γ ` te : t Γ ` fe : t

Γ ` (if ce te fe) : t

This rule says that the two branches have the same type (t), and the conditional
expression as a whole has this type.

Next up is function application:

Γ ` fe : function Γ ` ae : at
Γ ` fe (ae) : ?

Now we have a problem. We don’t know what the argument and return types
of the function are, so we can’t type check this expression. We need to modify
our definition of types to be:

type = num

| bool

| type → type

3



where at → rt is the type of a function whose argument has type at and whose
return value has type rt .

The correct way to type check application is:

Γ ` fe : at → rt Γ ` ae : at
Γ ` fe (ae) : rt

The final case is typing a function. We need to know the type of the argument
in order to type the body:

Γ[i← at ] ` e : rt
Γ ` (fun (i) e) : at → rt

This is missing one detail—in order to know that the argument has type at , we
need to annotate the argument in the function:

Γ[i← at ] ` e : rt
Γ ` (fun (i : at) e) : at → rt

Note that we have now changed the grammar of our language—every function
now must specify the type of its argument.

4


