
1

11/11/99 1

Algol 60, a language, a report

Richard Fateman
Computer Science Division, EECS
University of California, Berkeley

11/11/99 2

Background: Report on the Algorithmic
Language Algol 60

This is really a revision of the Algol 58 report, published in 1963

and describes the design language resulting from a committee

of some of the best computer scientists of the time.

11/11/99 3

Innovations

•BNF is introduced to the world.

•if-then-else, for statement.

•Invented and lost: own variables.

11/11/99 4

In Retrospect
There was an Algol 68, officially adopted as the successor to
Algol 60, and revised in 1975. Includes many types including
semaphores, formats, files.

Pascal became a popular successor to Algol (60, not 68); its\
flaws were recognized (even by the designer, Nicklaus Wirth)
who then wrote Modula-2 ... Modula 3;

Rivals in the algol stream are extremely numerous, including
for example, Ada, PL/I, C. Scheme (and through it Common
Lisp) has been influenced by Algol 60, at least with respect to
lexical scope.

2

11/11/99 5

Table of contents
1. BNF
2. Basic symbols, values integer, real Boolean.
2x: ??String??: no operations are defined except to pass

this to a non-Algol program.
String value sizes? This was
carried over into Pascal unfixed.

3. Expressions
4. Statements assignment, if, go to, for, procedure
5. Declarations

Among the missing: I/O is not defined in Algol report.
"outreal" and "inreal" usually defined in implementations.

Procedure bodies in other languages explicitly mentioned.

11/11/99 6

Reference, Publication, Hardware

The publication language follows various mathematics
conventions including boldface, italics, Greek, signs
like ⊃↑≤≥<�[]{}, etc.
It also adds reserved words like true, false, if then
else.
It is supposed to be beautiful. Evocative of
algorithms in mathematics. Maybe allow non-English
key words for an international flavor (entier).

11/11/99 7

Reference

What is the reference language? A simpler language to
which any publication language must map.
This is the language of the Algol committee, using []
for subscripts, ↑ for power, bold for keywords, italics
for variables.

What is the difference between the hardware
representation and the reference language?

Certainly this is confusing now, and it was
confusing back then.

11/11/99 8

Hardware

Recall that in the dark ages, character sets had 6 bits.
abcdefghij
klmnopqrst
uvwxyz
.,?’()/*&%@!+-$=#
newline, space, tab, form feed?
26 letters.
10 digits.
17 punctuation
3 whitespace

56 used up.

3

11/11/99 9

Hardware

Add a few more punctuation, escape, nul, etc. and
we’re stuck since 2^6 = 64

The hardware language looks pretty grim

Here’s how we get around this. We use multiple-
character symbols,and an escape character.

11/11/99 10

Hardware

If we wish to allow IF as an identifier distinct from
the reserved word "if" (something some language
designers would think quite reasonable in 1960...) then
we need to have an escape character, say |. Then
|if| |then| are the reserved words.
a, b, c, etc are the italic lower-case letters.

We could set up the extra symbols via |not|.
the uppercase symbols look like \a

11/11/99 11

Hardware

Basically this meant that Algol 60 programs
written in the reference language could be "upgraded"
to a published easy-to-read version or "downgraded"
to a machine representation ("transcribed by hand into
the BALGOL dialect for execution on a Burroughs
B5500")

So portability was handicapped, but this was inevitable
because even the character sets were incompatible.

11/11/99 12

Skip to some highlights

Call by name

For loops

4

11/11/99 13

Functions and Procedures
semantics of procedure call in 4.7.3

define what to do by substitution, replacing names.

real procedure foo (...) foo := ... end
vs

procedure foo (...) end

note that

real procedure foo; (...) foo:=x+foo := ... end

has a CALL to foo in there.

11/11/99 14

Type declarations

real procedure foo (x,y) ;

real x; value x;

foo := ... end

11/11/99 15

Call by name

real procedure foo (x,y) ;

real x; value x;

foo := ... end

Y is a “call by name parameter”

11/11/99 16

Call by name

F(a[i,j],i,j) is the favorite "use" of call by name. how to
deal with this rationally?

note that
x :=a[i,j]; f(x,i,j)
is quite different from
f(a[i,j],x,y)

5

11/11/99 17

Call by name: Summation

real procedure SIGMA (i,l,u,x);
value l, u;
integer i, l, u;
real x;
begin real s; s:=0 for i:=l step 1 until u do s:= s+x;

SIGMA :=s end.

SIGMA(I,1,100,A[I])

11/11/99 18

Call by name: Thunks

SIGMA(I,1,100,SIGMA (J,1,10,A[I,J]))

(let ((i 0)(j 0))
....

(defun seti(val)(setf i val)) ;; thunk for i set
(defun geti() i) ;; thunk for i get

(defun setj(val)(setf j val))
(defun getj() j)

(defun setaij(val)(setf (arrayref a i j) val))
(defun getaij()(arrayref a i j))

11/11/99 19

Call by name: Thunks

;; sigma(I,L,U,A[I]) Í
(LET ((S 0))
(BLOCK ()

(seti l)
Tag127

(if (> (geti) u) (return s))
(seti (+ 1 (geti))
(setf S (+ S (getai)))
(GO Tag127))))

11/11/99 20

Nice try, but no cigar
3.2.1 Function designator syntax

<parameter delimiter> ::= , |)<letter string> :(

g(x,r+s) is ok. so is

g(x)foo:(r+s)

mixtures like f(x,y)foo:(n+1)bar:(m,y) possible too.

The Algol60 Report example:

procedure Innerproduct(a,b)order:(k,p)Result:(y)

(The idea seems to have been key-word parameters. It is really hard to
define this as BNF+ a dusting of semantics. We might wish to support
key-word parameters which are only optionally present, and given in
any order.)
(defun foo (x y &key (z 3)(w 4)) ...)

called by (foo 9 10 :w 45) in CL.

6

11/11/99 21

Nice try, but no cigar
Built in functions (sin, cos, no tan. arctan). Are these

in degrees? radians? Left for the implementors.

3.3.4.3 defines a^b^c to be a^(b*c), probably unfortunate.

11/11/99 22

Switches or “designational expressions”
3.5 designational expressions (roughly, variables whose
values are labels, or labels themselves)

labels like s1, s2 can be identifiers or unsigned integers.
switch s := s1, s2, q[m], if v>-5 then s3 else s4
switch q := p1, w

p1: w:= 4.3

This ties in with section 4.3, go to :
go to 8
go to exit[n+1]
go to if a<b then 17 else s[3]

When a go to leads into a block: bad; illegal though ok into a
compound statement. outward is OK (what to do with local
bindings of names: abandon them!)

11/11/99 23

Types

4.2.4 Types
only integer real Boolean
arrays look like a[7:n,2:m] where n, m are non-local to the
block in which the array is declared. evaluated once.
array declarations preceed executable instructions.

(there is the notion of a block, in which such declarations
can happen).

(if an array is OWN, can it change shape?)

11/11/99 24

Knuth’s remaining Troublespots (1967)

Side effects

compute (a+ f(a,g(a))/g(a))

.... which g(a) happens first

It makes a different, if there are side effects

This is actually a fairly prescient discussion asking

"Do side effects serve any useful purpose?"

7

11/11/99 25

Knuth’s remaining Troublespots (1967)

Side effects

real procedure SIGMA (i,l,u,x); value l, u; integer i, l, u;

real x;

begin real s; s:=0 for i:=l step 1 until u do s:= s+x;

SIGMA :=s end.

SIGMA(i,1,m,SIGMA(j,1,n,A[i,j]))

Changes i and j as side effects.

11/11/99 26

Macroexpansion in Lisp
(defmacro sigma (i l u x)

‘(do* ((,i ,l (1+ ,i))(s 0 (+ s ,x)))

((> ,i ,u) s)))

(macroexpand-all ’(sigma j 3 10 (sin j))) Í

(DO* ((J 3 (1+ J)) (S 0 (+ S (SIN J)))) ((> J 10) S))

(macroexpand-all ’(sigma j 3 10 (sigma k 4 9 (array a j
k)))) Í

(DO* ((J 3 (1+ J))

(S 0 (+ S (DO* ((K 4 (1+ K))

(S 0 (+ S (ARRAY A J K))))

((> K 9) S)))))

((> J 10) S))

11/11/99 27

Macroexpansion in Lisp
;;; oddly enough, macroexpand does this...

(LET* ((J 3) (S 0))

(DECLARE)

(BLOCK NIL

(TAGBODY

#:|Tag127| (COND ((> J 10) (RETURN-FROM NIL (PROGN
S))))

(TAGBODY)

(SETQ J (1+ J) S (+ S (SIN J)))

(GO #:|Tag127|))))

Instead of

(DO* ((J 3 (1+ J)) (S 0 (+ S (SIN J)))) ((> J 10) S))

11/11/99 28

Incomplete Functions
begin real x,y;
real procedure F;

begin
F:=1;
go to L

end;

x:= F+1;
y :=1;

L:
end.

is x replaced by 2? what is y?

What happens if such an incomplete function is used when
computing array allocations?

8

11/11/99 29

FOR loops
We officially expand a for loop for v:= a step b until c do S

to
v:= a

l1: if (v-c)* sign(b)>0 then goto next; S;
v := v+b;

go to l1;
next:

What if b or c is changed by statement S ? b must be computed twice each
time through the loop (2n+1 actually), c, n+1 times, and if v is subscripted,
they are evaluated 3*n+1 times

11/11/99 30

Beyond these points
Major failings in Algol addressed by its successors?

structures

objects

multi-processing, synchronization

OO?

extensibility

