
CS 264/Fall 1999

Richard Fateman 1

9/29/99 1

CS 264 Implementation of Programming
Languages
//7: Compiling for a Lisp/Scheme language

Richard Fateman
Computer Science Division
Fall, 1999

University of California at Berkeley

9/29/99 2

Discussion of “simple” compiling
Norvig: PAIP, ch 23.
Allen, Anatomy of Lisp
vs.
Muchnick
Red Dragon Chapter 2
Appel
Compiler Design in C (Holub)

The problem with Red Dragon and similar
“clasical” compiler texts is that by the time you get
a compiler written you are exhausted and subject
to debugging frustrations. And the compiler that
you end up with is the one they have delimited in
advance for you. E.g. stack orientation, types,
control structures, pointers tend to be all “C”
variants. Parser augments require re-invention of
all of the data structures of the world, traversal,
printing etc. (eased by libraries of course).

9/29/99 3

Stack machine op codes

Move n args from stack to envNArgs

Return

(no pop)LabelJump

Go to start of n-arg fun, save returnnCall

Jump if top of stack=t, nil, popLabelTjump/Fjump

Pop the stackPop

Store stack top in globalSymGset

Store stack top in locali,jLset

Push a global var’s valSymGvar

Push a local var’s vali,jLvar

Push a constant on stack

Description
X

Args
Const

Opcode

9/29/99 4

Sample program in this code
(lambda()(if (= x y)(f (g x))(h x y (h 1 2))))

Args 0
Gvar x
Gvar y
Gvar =
Call 2
Fjump L1
Gvar x
Gvar g
Call 1
Jump L2

L1: Gvar x
Gvar y
Const 1
Const 2
Gvar h
Call 2
Gvar h
Call 3

L2: Return

stack

CS 264/Fall 1999

Richard Fateman 2

9/29/99 5

Sample execution
(lambda()(if (= x y)(f (g x))(h x y (h 1 2))))

Args 0
Gvar x
Gvar y
Gvar =
Call 2
Fjump L1
Gvar x
Gvar g
Call 1
Jump L2

L1: Gvar x
Gvar y
Const 1
Const 2
Gvar h
Call 2
Gvar h
Call 3

L2: Return

x-val

y-val

=

stack Grows down

9/29/99 6

Sample execution
(lambda()(if (= x y)(f (g x))(h x y (h 1 2))))

Args 0
Gvar x
Gvar y
Gvar =
Call 2
Fjump L1
Gvar x
Gvar g
Call 1
Jump L2

L1: Gvar x
Gvar y
Const 1
Const 2
Gvar h
Call 2
Gvar h
Call 3

L2: Return

false

stack

Assume =
returns false

9/29/99 7

Sample execution
(lambda()(if (= x y)(f (g x))(h x y (h 1 2))))

Args 0
Gvar x
Gvar y
Gvar =
Call 2
Fjump L1
Gvar x
Gvar g
Call 1
Jump L2

L1: Gvar x
Gvar y
Const 1
Const 2
Gvar h
Call 2
Gvar h
Call 3

L2: Return

stack

Fjump pops
stack

9/29/99 8

Sample execution
(lambda()(if (= x y)(f (g x))(h x y (h 1 2))))

Args 0
Gvar x
Gvar y
Gvar =
Call 2
Fjump L1
Gvar x
Gvar g
Call 1
Jump L2

L1: Gvar x
Gvar y
Const 1
Const 2
Gvar h
Call 2
Gvar h
Call 3

L2: Return

2

1

y-val

x-val

stack

Set up for call
h on (1,2)

CS 264/Fall 1999

Richard Fateman 3

9/29/99 9

Sample execution
(lambda()(if (= x y)(f (g x))(h x y (h 1 2))))

Args 0
Gvar x
Gvar y
Gvar =
Call 2
Fjump L1
Gvar x
Gvar g
Call 1
Jump L2

L1: Gvar x
Gvar y
Const 1
Const 2
Gvar h
Call 2
Gvar h
Call 3

L2: Return

h

2

1

Y-val

X-val

stack

(h 1 2)

Think about what h does… (args 2)…

9/29/99 10

Sample execution
(lambda()(if (= x y)(f (g x))(h x y (h 1 2))))

Args 0
Gvar x
Gvar y
Gvar =
Call 2
Fjump L1
Gvar x
Gvar g
Call 1
Jump L2

L1: Gvar x
Gvar y
Const 1
Const 2
Gvar h
Call 2
Gvar h
Call 3

L2: Return

h

(h 1 2)

Y-val

X-val

stack

9/29/99 11

Final step in execution
(lambda()(if (= x y)(f (g x))(h x y (h 1 2))))

Args 0
Gvar x
Gvar y
Gvar =
Call 2
Fjump L1
Gvar x
Gvar g
Call 1
Jump L2

L1: Gvar x
Gvar y
Const 1
Const 2
Gvar h
Call 2
Gvar h
Call 3

L2: Return

(h x y (h 1 2))

stack

9/29/99 12

Compiler glossary

CS 264/Fall 1999

Richard Fateman 4

9/29/99 13

Data Structure for a function

A function has 4 parts.
Code:
((ARGS 0) (GVAR X) (GVAR Y) (GVAR =) (CALL 2) (FJUMP
L1) (GVAR X) (GVAR G)
(CALL 1) (GVAR F) (CALL 1) (JUMP L2) L1 (GVAR X)

(GVAR Y) (CONST 1) (CONST 2)
(GVAR H) (CALL 2) (GVAR H) (CALL 3) L2 (RETURN))

Env: nil by default
Name: nil by default ; for debugging/printing
Args: nil by default; how much debugging?

9/29/99 14

Compiler Main Function
(defun comp (x env)

"Compile the expression x into a list of instructions"
(cond

((symbolp x) (gen-var x env))
((atom x) (gen ’CONST x))
((scheme-macro (first x)) (comp (scheme-macro-expand x) env))
((case (first x)

(QUOTE (gen ’CONST (second x)))
(BEGIN (comp-begin (rest x) env))
(SET! (seq (comp (third x) env) (gen-set (second x)

env)))
(IF (comp-if (second x) (third x) (fourth x) env))
(LAMBDA (gen ’FN (comp-lambda (second x) (rest (rest x))

env)))
;; Procedure application:
;; Compile args, then fn, then the call
(t (seq (mappend #’(lambda (y) (comp y env)) (rest x))

(comp (first x) env)
(gen ’call (length (rest x)))))))))

9/29/99 15

Sample helper: Comp-Begin, If
(defun comp-begin (exps env)

"Compile a sequence of expressions, popping all but the last."
(cond ((null exps) (gen ’CONST nil))

((length=1 exps) (comp (first exps) env))
(t (seq (comp (first exps) env)

(gen ’POP)
(comp-begin (rest exps) env)))))

(defun comp-if (pred then else env)
"Compile a conditional expression."
(let ((L1 (gen-label)) ; make up a name, probably not L1

(L2 (gen-label)))
(seq (comp pred env) (gen ’FJUMP L1)

(comp then env) (gen ’JUMP L2)
(list L1) (comp else env)
(list L2))))

;;seq = append
;; (gen ‘foo ‘bar) Í ((foo bar))

9/29/99 16

Compile Lambda
(defun comp-lambda (args body env)

"Compile a lambda form into a closure with compiled code."

(assert (and (listp args) (every #'symbolp args)) ()
"Lambda arglist must be a list of symbols, not ~a" args)

(make-fn
:env env :args args
:code (seq (gen 'ARGS (length args))

(comp-begin body (cons args env))
(gen 'RETURN))))

CS 264/Fall 1999

Richard Fateman 5

9/29/99 17

Defining a function, also using local vars
(let ((a 0.0)

(b 0.1))
(let ((c 1.0)

(d 1.1))
(let ((e 2.0)

(f 2.1))
(fun a b c d e f))))

This would generate instructions to put on the stack
(lval 0 0) ;a
(lval 0 1) ;b
(lval 1 0) ;c
(lval 1 1) ;d
(lval 2 0) ;e
(lval 2 1) ;f
(gvar fun)
(call 6

Think of the local vars in a 2-d vector of vectors
9/29/99 18

A properly tail recursive compiler

To make this work we need different instructions so we can explicitly
manage addresses in a program, not just
JUMP to them.

Here are the new instructions:

SAVE takes an address (a return address) and puts it on the stack.

CALLJ takes an address on the stack and jumps to it. It does NOT
“save the return address” somewhere.

CALL is gone.

RETURN acts as top-of-stack=value to return, 2 nd from top = return
address

9/29/99 19

Digression: Labels as data?

(prog()

(setf x ‘L1)

(go x)

(print 1)

L1

(print 2)

)

9/29/99 20

Digression: Labels as data?

(prog()

(setf x #’(lambda()(print 2))

(funcall x)

(print 1)

)

CS 264/Fall 1999

Richard Fateman 6

9/29/99 21

Example, new instructions

(comp-show ‘(f (g x)))

ARGS 0
SAVE K1
GVAR X
GVAR G
CALLJ 1

K1: GVAR F
CALLJ 1

stack

9/29/99 22

Example, execution trace

(comp-show ‘(f (g x)))

ARGS 0
SAVE K1
GVAR X
GVAR G
CALLJ 1

K1: GVAR F
CALLJ 1

G (fun addr)

X-val

K1 (addr)

stack

9/29/99 23

Example, execution trace

(comp-show ‘(f (g x)))

ARGS 0
SAVE K1
GVAR X
GVAR G
CALLJ 1

K1: GVAR F
CALLJ 1 …

K1 (addr)

stack

Inside
function

G

9/29/99 24

Example, execution trace

(comp-show ‘(f (g x)))

ARGS 0
SAVE K1
GVAR X
GVAR G
CALLJ 1

K1: GVAR F
CALLJ 1

F’s fun addr

(g x)

Stack

<stacked ret>
returned

CS 264/Fall 1999

Richard Fateman 7

9/29/99 25

Example, final step

(comp-show ‘(f (g x)))

ARGS 0
SAVE K1
GVAR X
GVAR G
CALLJ 1

K1: GVAR F
CALLJ 1

Stack

(f(g x))
Returned to

whatever called
this expr

9/29/99 26

Defining a function, also using local vars
(comp-show '(define (last1 l)

(if (null? (cdr l)) (car l)
(last1 (cdr l)))))

ARGS 0
FN

ARGS 1
LVAR 0 0 ; L
CDR ;; short call for primitive function
FJUMP L1
LVAR 0 0 ; L
CDR
GVAR LAST1
CALLJ 1

L1: LVAR 0 0 ; L
CAR
RETURN

GSET LAST1
CONST LAST1
NAME! ;; set name field of LAST1 if not set/debug
RETURN

9/29/99 27

Compiler/ version 2
(comp-show '(define (length l)

(letrec ((len (lambda (l n)
(if (null? l) n

(len (rest l) (+ n 1))))))
(len l 0))))

9/29/99 28

Compiler/ version 2
FN

ARGS 1
NIL
FN

ARGS 1
FN

ARGS 2
LVAR 0 0 ; L
FJUMP L2
SAVE K1
LVAR 0 0 ; L
GVAR REST
CALLJ 1

K1: LVAR 0 1 ; N
1
+
LVAR 1 0 ; LEN
CALLJ 2

L2: LVAR 0 1 ; N
RETURN

LSET 0 0 ; LEN
POP
LVAR 1 0 ; L
0
LVAR 0 0 ; LEN
CALLJ 2

CALLJ 1
GSET LENGTH
CONST LENGTH
NAME!
RETURN

CS 264/Fall 1999

Richard Fateman 8

9/29/99 29

Compiling with context

In the tail-recursive compiler, each piece of code is responsible for
inserting is own RETURN instruction or implicitly returning by
calling another function without saving a continuation point.

Norvig keeps track of the possibilities with 2 flags, val? and more?

F

T

F

T

More?

impossibleF

(begin X y)F

(if p X z) or (begin y X)T

(if X y z) or (f X y)T

Example, X in Val?

9/29/99 30

Compiling with context/main fun

(defun comp (x env val? more?)
"Compile the expression x into a list of instructions"

(cond
((member x ’(t nil)) (comp-const x val? more?))
((symbolp x) (comp-var x env val? more?))
((atom x) (comp-const x val? more?))
((case (first x)

(QUOTE (arg-count x 1)
(comp-const (second x) val? more?))

(BEGIN (comp-begin (rest x) env val? more?))
(SET! (arg-count x 2)

(assert (symbolp (second x)) (x)
"Only symbols can be set!, not ~a in ~a"
(second x) x)

(seq (comp (third x) env t t)
(gen-set (second x) env)
(if (not val?) (gen ’POP))
(unless more? (gen ’RETURN))))

(IF (arg-count x 2 3)
(comp-if (second x) (third x) (fourth x)

env val? more?))
(LAMBDA (when val?

(let ((f (comp-lambda (second x) (rest2 x) env)))
(seq (gen ’FN f) (unless more? (gen ’RETURN))))))

(t (comp-funcall (first x) (rest x) env val? more?))))))

9/29/99 31

Compiling with Call/CC

This requires an additional operation that will have to manipulate
the current stack: The instruction CC is defined to save the current
continuation : THE STACK in its environment.

We must also provide a function which when called installs that
environment (setting THE STACK BACK TO THAT
ENVIRONMENT). This is done with one more instruction SET-CC.

9/29/99 32

The Abstract Machine

Too much detail. READ ABOUT IT in the handout or the code:
lisp/compile3.lisp

CS 264/Fall 1999

Richard Fateman 9

9/29/99 33

The Peephole Optimizer

Too much detail. READ ABOUT IT in the handout or the code:
lisp/compile3.lisp

Fundamentally, we have used very naïve instruction generation
techniques that end up with pushing stuff on a stack only to see it
popped off without use; we generate conditional jumps when we
know the condition (T or F) etc.

Looking at the output from the original compiler gives us many
suggestions.
Often the optimization cascades: only when one eliminates an
unused label does it become apparent that it was a label on dead
code.

