
CS 264/Fall 1999

Richard Fateman 1

9/9/99 1

CS 264 Implementation of Programming
Languages
//5: Types

Richard Fateman
Computer Science Division
Fall, 1999

University of California at Berkeley

9/9/99 2

Why Types: Software Engineering

Software Engineering: Extra static correctness tests at compile-time
can find bugs, even check code that would not be executed in routine
tests.
Useful relationship with ADT/ replacement of representations
Interfaces defined by meta-programs: types only
Potential proofs of type-correctness / elements of rigor in
programming
Efficiency of generated code can be improved.

(For Lisp)
Dynamic type checking requires the moral equivalent of tags (space)
It also requires checking the tags (time).
Dynamic can check only code that is executed.
(Theorists)
Type theories, a bone to gnaw on
Type inference, unification

9/9/99 3

What do we include as type errors?

Argument/parameter/return value mismatch in number or type
Arithmetic type mismatch
Matrix dimension mismatch (some languages)
What do we mean by “match” anyway? Exact match, match by
name, match by unification, match by subset or inheritance…

Consequences of various type policies (C language) : conversions
unsigned/signed long ints; null-pointer to 0; double to float?
Structures, unions, array of T vs pointer to T
Explicit conversion (cast in C) implicit (incomplete checking
between separately compiled units)
Contagion e.g. double+float (usual treatment in languages like C is
to find a widest arithmetic type among operands).

9/9/99 4

Why types can be a pain

(define (length x)(if (empty x) 0 (+ 1 (length (rest x)))))

Who cares if x is a list of ints or bools or string? A type
checker.

Say we want to sort items. Do we need to have a
different program for each type of record? Lisp doesn’t
give a damn but languages like Pascal would require
some fancy stepping to get around this.

We get around this with polymorphism (Milner
polymorphism used centrally in ML)

CS 264/Fall 1999

Richard Fateman 2

9/9/99 5

Type Disciplines

A language is sound or type-safe = every well-typed
program is guaranteed to execute without type errors.
Even an unsound type discipline may be useful (e.g. C)

Generally there is a tradeoff between ease of
programming (type specification), ease of type-checking,
language generality.

Type inference can eliminate or reduce the need for type
declaration while ensuring soundness.

9/9/99 6

Assembler, C, Lisp

Assembler: almost no type checking
(words/bytes/floats?)
C: loophole-ridden but static checking
Lisp: mostly dynamic type check, compiler advisory.

9/9/99 7

Types: Lisp doesn’t insist on declarations

Hazards:

In general: not knowing types in advance of runtime has costs:
Dynamic type-checking requires the moral equivalent of tags (space)
It also requires checking the tags (time).
At runtime we can check only code that is executed, leaving the
possibility that a “new” path may be found with type errors.

Advantages:
Programs are normally simpler to read and write, more general.

9/9/99 8

Types: Lisp allows declarations

Type specifiers:
Examples
(vector double-float 100)
(vector * 100)
(vector (member integer float) *)
(and integer (satisfies primep))
(integer 0 255) = unsigned-byte
Array, atom, bit, character, integer, compiled-
function, hash-table, number, t, …

Usage
(defun foo (x)

(declare (double-float x) (optimize speed) …)...)
The lisp compiler is allowed to ignore the declarations; if the declarations
are in conflict with reality (e.g . (foo “hello”)) then results are
not officially defined.

CS 264/Fall 1999

Richard Fateman 3

9/9/99 9

Types: Lisp allows declarations

(type-of x) returns a “most specific” answer
(typep x typename) returns T if x’s type is contained intypename.

How much type inference is allowed? Any amount. How much is
required? None.
.

(Theorists)
Type theories, a bone to gnaw on
Type inference, unification

9/9/99 10

Types: Theorists’ playground

In addition to their various uses in programming, type theories have
been a fruitful area for mathematical analysis: a major bone to gnaw
on for CS theorists, with (as noted) software engineering
implications.

Related areas:
Matching and unification, constraint-based systems.

Local research by Prof. Alex Aiken’s group:
http://http.cs.berkeley.edu/Research/Aiken/bane.html

9/9/99 11

Good designs. Bad designs. Mathematical
aesthetics vs usefulness

Old C convention: all floats other than the longest are merely
memory formats: all arithmetic done in double: a good idea that has
become better over time, as speed of fp arithmetic increased.
Standard has changed though.

Sqrt(x): what if x is negative? Type error if it is not expected to
return a complex number? (CL Sqrt returns complex, making type
deduction difficult). May even return integer for (sqrt 4).
But then most Lisp programmers would regard static type discipline
as a nuisance. (Cf. ML)

9/9/99 12

Simply-typed lambda calculus

Use our lambda calculus with integers, +, and functions.
Examples:
Legal
(+ 1 1)

Illegal
(1 1)
(+ 1 (lambda(x) x))
Type systems rule out illegal constructions

CS 264/Fall 1999

Richard Fateman 4

9/9/99 13

Denoting constructed types

int
(Å (int) int) ; a function from one int to an int
(Å (int int)(Å(int) int) ; a function from 2 ints to the
previously denoted type.

Ordinarily we will try to assign a type (or types) to each
expression by applying some set of rules, and make sure
that the assignments are consistent.

9/9/99 14

Type rules as natural deduction

For example,
using the convention e.g in ML, that x : y means x is of type y and
given that I is some integer, we have this axiom.

premise1 ; … ; premisen

conclusion

I : int

9/9/99 15

Serious problem

If “x” is a free variable we have no way of knowing its type.

The solution

We specify the types of the free variables in the premises. That is, we
prove: given some set of assumptions A then e has type t (e : t).
In symbols: A � e : t

9/9/99 16

Deduction rules for this simple system

1. All explicit integers, 1, 35, … are integers. For each integer I,
A �I : int

2. A, x : t � x : t {x stays as type t}

3. A, x : t� e : t’

A, (lambda(x) e) : (Å t t’) { we’ve constructed a function from t to t’}

4. A� e : (Å t’ t) ; e’: t’

A � (e e’) : t { we’ve applied a function from t’ to t on proper argument}

5. A� e : int ; e’: int

A � (+ e e’) : int {particular rule about addition of integers}

CS 264/Fall 1999

Richard Fateman 5

9/9/99 17

Deduction rules for this simple system

5. There is no rule 5.

Notes on Aiken’s polymorphic type notes:

(lambda(x) x) = \x . x

(e1 e2) = e1 e2

(Å a b) = a -> b

9/9/99 18

Examples of proofs

x:int |- x:int

|- \x.x : int -> int |- 1:int

|- (\x.x) 1 : int { ((lambda(x)x) 1) is an int if x is an int}

-- -

x:int |- x:int x:int |- 1:int

x:int |- x+1:int

|- \x.x+1 : int -> int |- 2:int

|- (\x.x+1) 2 : int { ((lambda(x)(+ x 1) 2) is an int if x is an int}

9/9/99 19

What do the rules mean?

Intuitively, the proof system only proves facts for expressions that have
“no runtime errors” and where the given assumptions hold. If there is no
proof then running the program maygenerate a runtime error.

We can formalize the notion of “bomb” by adding rules to the evaluation
scheme for the lambda calculus

(I e) for any integer I and expression e is “bomb”

(bomb e) for any expression e is “bomb”

(e bomb) is also a bomb

(+ bomb e) is .. ✬

Etc.

(One can prove a theorem to the effect that if e has a type t, its evaluation
will not be a bomb. However, if there is no proof, e has no type, the
program may not bomb, e.g. ((lambda(x)(x x))(lambda(x)(x x)))

9/9/99 20

How do we construct a proof?

1. Reduce the typing problem to a constraint resolution
problem.

2. Show how solving the constraint system is equivalent
to unification.

3. Implement unification (e.g. as a graph problem)

CS 264/Fall 1999

Richard Fateman 6

9/9/99 21

Reduce to Constraint Resolution

In this system there is only one rule for each kind of expression. The
proof has a fixed form that can be build from the expression to prove.
Start with a “skeleton” at the bottom. What is the type of
((lambda(x)x) 1) ? Or in Aiken’s notation, (\x.x) 1 : ?

x:? |- x:?

|- \x.x : ? -> ? |- 1:?

|- (\x.x) 1 : ?

Any solution of the constraints “?” gives a type derivation. Formally
introduce notation [e] for the (unknown) type of an expression e. Here
are some constraints

9/9/99 22

Constraint calculations

• Lambda expression
• (lambda(x) e)
• (e1 e2) {application}
• (+ e1 e2)
• i {integer}

• Constraint on types
• (Å[x] [e]) = [(lambda(x)e)]
• [e1] = (Å [e2] [(e1 e2)])
• [e1] = [e2] = [(+ e1 e2)]
• [i] = int

Any type derivation is a solution to the constraints, and vice versa. (Theorem in
notes.)

9/9/99 23

Unification

The constraint equations are between types. If we can find an
association of each variable [v] to a type (like int or (Åint int) such
that each constraint t1=t2 on variable types is satisfied, we are done.

Unification can be thought of as structural pattern matching on graphs.

There are a variety of contexts in which unification is used; in fact it is
the major idea at the foundation of Logic Programming languages
(Prolog).

Consider first pattern matching;

Variables v1, v2, v3

(v1 v2 (v1 v2) v3) matches (a b (a b) c) with v1=a, v2=b, v3=c

9/9/99 24

Unification (II)

What if we have variables on both sides:

Variables v1, v2, v3

(v1 b (v1 v2) v3) unifies with (a v2 (a b) c) with v1=a, v2=b, v3=c

(v1 b v3 v3) unifies with (a v2 (a b)) with v1=a, v2=b, v3=(a b)

(v1 b) unifies with (v2 v3) with v1=v2=anything, v3=b

(v1 b v2) unifies with (v2 v3 c) with v1=v2=c, v3=b; note the
“chain” of matching to derive v1=c.

How about

(v1 (v2)) and (v2 v1) ? Unification algorithms can get their
underwear in knots over matches in which the variable being matched
occurs internal to the target: “Occurs checks” are one option.

CS 264/Fall 1999

Richard Fateman 7

9/9/99 25

What about “free type variables”

What if we have a type description that does not resolve to a particular type
(single type system= monomorphic)? We have polymorphic types.

We can solve the problem of “length of list” computation and many more by
allowing types to be VARIABLES. We also introduce the notion of “forall”
e.g.

The type of the identity (lambda(x)x) is (forall a (Å a a))

So a type can be some name like “a”, and a new type rule can look like this

A |- e : t {type variable “a” does not appear free in given A}

A |- e : (forall a t)

And we can instantiate “a” for any particular type by
A |- e : t (for all a t)

A |- e : t[aÄt’] { that is, t, with t’ replacing all free occurrences of a}

9/9/99 26

“Let” polymorphism

Allowing polymorphism anywhere makes it hard to compute with types.

ML and similar languages allow polymorphism with certain restrictions,
namely what is called “let polymorphism.”

Add to the lambda calculus some new syntax:

(let((x e) e’) . {meaning bind the value e to x and use that inside e’}

This is the same as ((lambda(x)e’)e) but we are going to make another
distinction, type-wise.

9/9/99 27

“Let” polymorphism

The typing rule for let-binding is

A |- e: s ; A, x:s |- e’ : t

A |- (let ((x e)) e’) : t

Here e may have a polymorphic type, allowing x to be different types in
different places. E.g. (let ((f (lambda(y) y)) ((f f) 1) has type int. and f has
different types in the 2 places. However, the let-polymorphism restriction is
that within e, x cannot be polymorphically used. In particular, a recursive
function cannot be used polymorphically within its own function body.

The lambda calculus + let-polymorphism is the Hindley/Milner type
discipline. The monomorphic part (without polymorphism) was probably
known to Church and rediscovered by Hindley in the late ’60s. Milner
rediscovered it again in the late ’70s and added let-polymorphism. This
system forms the core of the typing discipline for most functional languages
(including ML).

9/9/99 28

Principle Types

Definition. Let s be a polymorphic type. We say that s’ is an instance of s if
s’ is achieved from s by either renaming or instantiating some bound
variables of s with types. We write s >= s‘ if s' is an instance of s.

For example,

(Å int int) is an instance of (forall a (Å a a))

A type s for an expression e is most general or principle under assumptions
A if

A |- e : s and A|- e : s’ implies that s >= s’

The Hindley/Milner system has principle types (thm, not proved here, but
construction of principle types sketched in Aiken’s notes.

