
CS 264/Fall 1999

Richard Fateman 1

10/21/99 1

CS 264 Implementation of Programming
Languages
//13: Compiling for new architectures
Intel/HP IA-64 (EPIC, VLIW)

Richard Fateman
Computer Science Division
Fall, 1999

University of California at Berkeley

10/21/99 2

Readings:

• IA-64 at http://developer.intel.com/design especially
• http://developer.intel.com/design/ia64/downloads/adag.htm

– Sections 1-4, 8-9 (Applications Developer’s Architecture
Guide

• IBM Research on VLIW at
http://www.research.ibm.com/vliw/home.html
– Papers/hpca-97.ps

• JILP?
• Tinker project at www.tinker.ncsu.edu/tinker (Lego compiler)

10/21/99 3

Readings:

• On floating point: look at
– http://www.cs.berkeley.edu/~wkahan/ieee754status/

• ieee754.ps
• Other stuff as well

– David Goldberg’s paper “What every computer scientist should know about
floating point arithmetic” Comp. Surveys, 1991 /papers/goldberg.pdf (44
pages, pdf image)

10/21/99 4

Idea behind VLIW

• Very-Long Instruction Word (VLIW) architectures
are designed for exploiting instruction-level
parallelism (ILP) in programs.

• Multiple functional units fetch from the
instruction cache a Very-Long Instruction Word
containing several primitive instructions, and
dispatch the entire VLIW for parallel execution.

• These capabilities are exploited by compilers
which generate grouped code.

CS 264/Fall 1999

Richard Fateman 2

10/21/99 5

Is it a good idea?

• Early VLIW processors such as the Yale ELI, the Cydrome Cydra-5
and the Multiflow TRACE were implemented, commercialized, and
pronounced resounding failures.

• Today, commercial superscalars have apparently reached the
limits of what can be done solely in hardware without severely
impacting cycle time.

• This has forced renewed interest in VLIW, as well as complex
software, in the HP/Intel IA-64 alliance.

10/21/99 6

Goals of IA-64 architecture

• Increase instruction-level parallelism
• Manage memory latency
• Improve branch handling
• Fast floating point
• Reduce procedure call overhead
• (Compete with RISC)
• (Compatibility with Pentium etc)
• (reliability, yada yada)

10/21/99 7

What’s this called?

• Merced
• IA-64 (family)
• Itanium

10/21/99 8

Why is this significant to us?

• Interesting language / compiling issues
• Pushes many parts of the envelope in

architecture
• Inserts novel complexities into practical

system/application considerations.

CS 264/Fall 1999

Richard Fateman 3

10/21/99 9

Why is this significant to the computing
business?

• Since it is superset of Intel-32 bit
– Software compatibility with Microsoft etc

• Jmpe (IA-32) jumps to IA-64 extended instr.
• Br.ia (IA-64) brances to IA-32 address/changes instr set

– Also significant UNIX vendor interest

• However, it is not alone:
– Alpha architecture (Compaq/DEC)
– RS-6000, Power-PC (IBM, Motorola, Apple)
– SPARC (Sun)
– IBM S/360, AS-400

10/21/99 10

Easy intro via Intel web site

http://developer.intel.com/vtune/cbts/ia64tut
s/index.htm

(tutorials)

10/21/99 11

An easy call: Explicit data parallelism

• Pack up several data items in a single
unit: 8, 16, 32 bit quantities: add/ mult/
average etc. in parallel.

• Multimedia / 3D graphics
• Data can be bytes, integers, or single-

floats (e.g. exponent + 2 mantissas)
• Implications for programming languages?

10/21/99 12

Trickier: Instruction Groups / Bundles

• Divide up your instructions to avoid RAW
memory (read after write), WAW conflicts.

• Try to execute them at the same time.
• Multiple execution units make this

plausible.
• Compare to microcode of 1980’s

CS 264/Fall 1999

Richard Fateman 4

10/21/99 13

IA-64 Instruction Bundles

• 128 bits = 3x41 + 5 bit templates
• The templates allow you to specific ends

of instruction groups (;; in assembler)

10/21/99 14

IA-64 Hints from the compiler or runtime

• Cache suggestions
– Every memory load/store has 2-bit cache field
– Indication of spatial and/or temporal locality

• Branch suggestions “completers”
• Branch Whether (spnt=static predict not taken)
• Branch Whether (dptk = dynamic predict taken)
• Sequential Prefetch (few, none, many)
• Cache Deallocation (none, clear)

10/21/99 15

IA-64 Branch is even more complex

• Loop Count (LC) register
• Register rotation provides register

renaming
• Epilog Count (EC) used in While loops

10/21/99 16

IA-64 Advanced Load / speculation

• Move a load as early in code as plausible
• Advanced Load Address Table (ALAT)

entry is created
• Later, check to see if load is completed

and still valid
– It must still be in ALAT
– All other memory-changing references must delete

entry from ALAT.

CS 264/Fall 1999

Richard Fateman 5

10/21/99 17

IA-64 Advanced Load / speculation

• Handling speculation afterward:
– ld.c rx= … Does the load if necessary, now.
– chk.a rx, recovery branches to label recovery if

register rx is “NaT”

• Completer s= speculative prevents exceptions
from happening if ultimately one does not use
this load. E.g. ld.sa rx=bogus?

10/21/99 18

IA-64 NaT (Not a Thing), NaTv

• NAT registers parallel to general registers
• NATV (not a thing values) in floating point

registers (selected NaN floats)
• Signals a computation not completed:

recovery needed.
• For chk, recovery code must be generated

by compiler/programmer

10/21/99 19

IA-64 Last notes on memory access

• lfetch line fetch (cache hint, ignorable)
• mf memory fence (forces ordering

between prior and subsequent memory
accesses) used to synchronize memory-
mapped I/O.

10/21/99 20

IA-64 Predication

The idea: Use compare to set two predication
registers say p1 and p2 =not(p1). Then issue

(p1) Instruction..
(p2) Instruction..

“Start doing” all instructions. But don’t complete
them all.

There are 64 p registers (1 bit each) p0=1 “true”
Removes if-then-else branch Å parallelism exhibited

CS 264/Fall 1999

Richard Fateman 6

10/21/99 21

IA-64 conventional control/branch prediction

if (r1) r2= r3+r4;
else r7= r6-r5; // assume this is inside a loop

Using branch prediction, if the conditional in the code is
mispredicted 30% of the time and a miss produces a 10 cycle penalty,
we will lose 3 cycles per loop execution.

regular IA-64 code
cmp.eq p1,p2=r1,r0 //cycle 0

(p1) br.cond else-clause //cycle 0
add r2=r3,r4 //cycle 1
br end_if //cycle 1

else_clause:
sub r7=r6,r5 //cycle 1

end_if:
10/21/99 22

IA-64 Branch Prediction: static or dynamic

It is possible to predict branches dynamically or statically;
The application guide suggests that we can/should tailor static
predictions by using “binary rewriting tools” at some point.
(presumably a post-compiling pre-run-time “statistics gathering” time).

It would be possible in principle to overlay instructions at run-time
but the tendency is for OS to reject this possibility in user-mode.

Dynamic branch prediction assisted by branch cache deallocation hint
completer (sometimes the most-recently executed branch is not useful
to remember, either because it will not be re-visited any time soon or
because the instruction will re-supply the hint prior to next visit.)

10/21/99 23

IA-64 Indirect Branches, Loop branches

A set of 8 branch registers are used for indirect branches

LC and EC registers support “counted” loops and “while”
loops

10/21/99 24

IA-64 Predication

cmp.ne p1,p2=r1, 0 ;;// set p1 and p2 ;;=stop req
(p1) add r2=r3,r4
(p2) sub r7=r6,r5

// note that p1 and p2 are guaranteed complements
// no branch misprediction is possible.
// This code is 2 cycles vs previous average 5 cycles.

// what if the then/else clauses are longer?
// we may lose out eventually with predication.

CS 264/Fall 1999

Richard Fateman 7

10/21/99 25

IA-64 Predication

cmp.ne p1,p2=r1, 0 ;;// set p1 and p2 ;;=stop req
(p1) add r2=r3,r4
(p2) sub r2=r6,r5

//note we can also re-use registers with complementary predicates….

10/21/99 26

IA-64 Downward code motion
ld8 r56 = [r45] ;; //cycle 0: load
st4 [r23]=r56;; //cycle 2: store (oof)

Label:
add … //cycle 3
add … //

Vs
// point which dominates Label (explain)

cmp.ne p1,p0 = r0, r0 // initialize p1 to false (0)
// other stuff

cmp.eq p1,p0 = r0,r0 // initialize p1 to true (1)
ld8 r56=[r45] ;;// cycle 0

Label:
add … //cycle 1
add

…
(p1) st4 [r23]=r56 //cycle 2

10/21/99 27

IA-64 So many registers, Register stacks

• How many registers are enough?
– R0-r31 are global or static regs
– R32-r127 can be configured as stack
– Up to 96 can be allocated by alloc
– The stack registers are always addressed as r32 and

up

• Register Stack Engine (RSE) manages
overflow to memory

10/21/99 28

IA-64 So many registers, rotate’em

• Rotating registers in multiples of 8:
– Reg(n-1)Åreg(n) for n<max
– Reg(max) Åreg(32)
– Alloc instruction specifies the max size.

