
1

9/2/99 1

CS 264 Implementation of Programming
Languages
//3: Interpreters//

Richard Fateman
Computer Science Division
Fall, 1999

University of California at Berkeley

One way of looking at the definition of programming languages is
through interpretation. An operational semantic definition of a
programming language is advantageous in building compilers as well,
but the most direct route is via interpreters. Those of you familiar with
the meta-circular evaluation from Scheme (CS 61a here at Berkeley) will
perhaps remember some of this stuff. (We hope so, of course…)

2

9/2/99 2

A sample parse tree, various representations
(review)

a := b * (c + d)

id id id id

V V V V

F F F

T T

E

E

F

T

T

E

S
(s (v (id a)) := (e(t (f (v (id b))) * (t(f “(“ e
(t (f (v (id c)))) + (e(t(f(v(id d)))))) “)”)))))

Or, omitting all “single productions”

(s (a := (t b * (f “(“ (e c + d))”)”))

Or if we omit non-terminals and
move “infix” ops to the front, and
omit “(“ “)”,

(:= a (* b (+ c d))) ...

If we allow a computer to generate the tree, but in some internal form,
we can fiddle around for the most convenient computational expression.

The nice thing about lisp in this regard is that one can ordinarily just print
a tree with (print x) and read a tree from a file (should you be obliged to
write it to a file, which is unlikely…) by (setf x (read stream)) where
stream is an open file descriptor.

3

9/2/99 3

A sample parse tree, if you used C, Pascal…

a := b * (c + d)
(:= a (* b (+ c d))) ...

:=:=

*

A B

+

If we allow a computer to generate the tree, but in some internal form,
we can fiddle around for the most convenient computational expression.

4

9/2/99 4

A sample parse tree, if you used C, Pascal…

a := b * (c + d)
(:= a (* b (+ c d))) ...

:=:=

*

A B

+

Some structure with pointers, probably.. How many pointers?

Symbol Table entry
Symbol Table entry

If we allow a computer to generate the tree, but in some internal form,
we can fiddle around for the most convenient computational expression.
We also have to find a way of storing strings, and symbol table entries
(the ovals above)

The nice thing about lisp in this regard is that one can ordinarily just
store information on the already-existing symbol table for the symbols
here (e.g. the symbol A with print-name “A” and possibly with other
attributes, e.g. value, lexical binding sites, token type, etc. (the lisp
property list allows for attribute-value pairs) (setf (get symbol attribute)
property).

e.g. (setf (get ‘i43 ‘type) ‘integer)

And retrieval by (get ‘i43 ‘type) -> integer

5

9/2/99 5

Interpreting the tree: prefix walk

:
=
:=

*

A B

+

Some structure with pointers, probably

Symbol Table entry
Symbol Table entry

1. Visit := decide to do assignment, a special op

2. Wait to visit lhs until we know what to store.

3. Visit the rhs (*) to see what to compute.

4. Visit its children to see what to “*”. …

If we allow a computer to generate the tree, but in some internal form,
we can fiddle around for the most convenient computational expression.

In lisp

(defun tree-walk (h); e.g. h= (f a b c)

(cond ((atom h) ;;; maybe check for number, string, self-evaluating

)

((eq (first h) ‘setf)

(put-into-storage (second h)(tree-walk (third h))))

(t ;; more generally

((get (first h) ‘operation) ; what is the operation f here??

(apply * (mapcar #’tree-walk (rest h)))))))

6

9/2/99 6

What requirements are there on the language
for writing tree walk/ interpreter?

• Must be able to talk about the traditional data
layout of ordinary data (numbers, arrays, strings),
tree structure, symbol tables, etc.

• Must access primitive operations (e.g. machine +,
*, library routines), memory allocation, interrupts,
input/ output.

• Must have some representation for new
procedures and bindings if we are going to define
new subroutines as part of the interpretation.

• (Speed?) Sure: but we’ll get speed other ways.

Any “modern” language should do, but some of them are much better
suited than others. After writing about 20 pages of code you can get to
pretty much level ground. (Most interpreters look like a more-or-less
poorly written partial implementation of Lisp).

7

9/2/99 7

A simple language to interpret: Scheme, a dialect of lisp

Simple syntax: a, AnAtom, Another-atom, (this is a list)
(so (is (this))
Function application is just evaluating a list (+ 3 4) Å 7

Simple list operations: (cons 1 (cons 2 ‘())) Å (1 2),
(first ‘(1 2 3)) Å 1, (rest ‘(1 2 3)) Å (2 3)

Simple function definition
(define (f x) (+ x 1)) is shorthand for essentially

(set! f (lambda(x) (+ x 1))

Lexical scope, lambda calculus

((lambda(x)(lambda(y)(+ x y)) 45) 50) Å

(lambda(y)(+ 50 y)) 45) Å95

Explain where lambda came from: Church’s logical notation taken by
John McCarthy, who claims now to not have understood it, but the idea
of an anonymous function (no name) with variables, translated into
computer language, worked.

8

9/2/99 8

Baby Scheme interpreter, in Common Lisp (top level)

(defun scheme ()

"A Scheme read-eval-print loop (using interp)"

(init-scheme-interp)

(loop (format t "~&==> ")

(print (interp (read) nil)))) ;; NOTE: READ = LEX,PARSE,build
trees

This is a common lisp program. All it does is call the initialization
program (next slide or two), and then goes into a loop printing a prompt
Í on a new line, reading (one assumes that the input is automatically
echoed on the paper or the display) and printing the result of
interpretation (interp is called eval, but that’s a function in CL, so Norvig
decided to not cover over eval, but use a different name.)

Note: comments are prefixed by ; or ;; or ;;; to end of line.

The string “A scheme read….” is a documentation string, also a
comment, but it persists “in memory” so that if you ask about the
function being defined here, a debugger can tell you this string. Other
comments reside in files only. A multi-line comment in lisp can be

#| delimited like

this |#

9

9/2/99 9

Baby Scheme interpreter, in Common Lisp (steal primitives)

(defun init-scheme-interp ()

"Initialize the scheme interpreter with some global variables."

;; Define Scheme procedures as CL functions:

(mapc #’init-scheme-proc *scheme-procs*)

;; Define the boolean ‘constants’. Unfortunately, this won’t

;; stop someone from saying: (set! t nil)

(set-global-var! t t)

(set-global-var! nil nil))

(defun init-scheme-proc (f)

"Define a Scheme procedure as a corresponding CL function.“

;; f is either * + … or (eq? eq) if the names differ

(if (listp f)

(set-global-var! (first f) (symbol-function (second f)))

(set-global-var! f (symbol-function f))))

Set up the data used for Scheme from what is sitting around in lisp.
This slide and the next show how. Grab all the definitions for +, *, cons,
etc from lisp.

In the “real world” you’d have to make all this out of low-level stuff. In
fact in implementing Common Lisp you would ordinarily write programs
in assembler or C for + * …. Or perhaps scoot around this by
compilation. That’s for later.

10

9/2/99 10

Baby Scheme interpreter, in Common Lisp (steal primitives, II)

(defparameter *scheme-procs*

’(+ - * / = < > <= >= cons car cdr not append list read member

(null? null) (eq? eq) (equal? equal) (eqv? eql)

(write prin1) (display princ) (newline terpri)))

In some languages the notion of a procedure is reduced to that of an entry point.
Taking the binding of “>” as a procedure and doing something useful with it is not a
traditional operation in most languages. (Why?)

Here’s the call to the “stealing” program.

11

9/2/99 11

Baby Scheme interpreter, in Common Lisp (hack)

(defun interp (x &optional env)

"Interpret (evaluate) the expression x in the environment
env."

(cond

((symbolp x) (get-var x env))

((atom x) x)

((case (first x)

(QUOTE (second x))

(BEGIN (last1 (mapcar #’(lambda (y) (interp y env))
(rest x))))

(SET! (set-var! (second x) (interp (third x) env) env))

(IF (if (interp (second x) env)

(interp (third x) env)

(interp (fourth x) env)))

(LAMBDA (make-procedure (second x)(rest2 x) env));;; make
a procedure

(t (apply (interp (first x) env) ; mysterious

(mapcar #’(lambda (v) (interp v env))

(rest x))))))))

This is a common lisp program interpreting the simple lisp dialect
Scheme, based on Norvig’s chapter 22. It defines a function interp (often
called “eval”), which takes a tree (just a lisp expression) and an
environment (abstraction for name-value bindings) and produces a
value. (explain &optional)

If input is a symbol, look up its binding. Return it

If input is otherwise an atom, it is a number or string. Return it.

If (quote x) also written ‘x, return x, the second item in the list.

If (begin x y z …) then evaluate each in turn. (first = begin). Return last.

If set!, access the environment to store the value computed.

If (if x y z) then do the right thing. . Not everything is evaluated.

If Lambda… extend the args, maybe put (begin ..) on the body and call
interp again.

If anything else, we have an expression (f g h….) where f is presumed
to have as its value, A FUNCTION. Find out what that is, and apply it
on the arguments each of which is interpreted too.

What’s this “apply” thing?

12

9/2/99 12

Baby Scheme interpreter, Making a Procedure

What Norvig suggests:

Since we have Common Lisp,

Make a CL procedure which calls interp and have CL apply it:

(defun make-procedure (parms code env)

#’(lambda (&rest args)

(interp code (extend-env parms args env)))))

;; where extend-env makes it possible for interp to look up the value

;; of variables in parms by matching them to values in args found.

Why is this a total hack? Because we never face up to how to encode a procedure. Is it a vector of
byte-codes, a lisp symbolic expression, assembly code? Could be any of these: depends on what the
CL system does.

Really, we want apply to be something like this

If you understand what is going on here, you are in good shape. This is
subtle. If you don’t follow it, ask.

13

9/2/99 13

Baby Scheme interpreter, Making a Procedure (II)

Would you prefer…

(defun make-procedure (parms code env)

“Construct some special tagged list or vector object that is unmistakably
a procedure, e.g. “

(vector “THIS IS A PROCEDURE OBJECT”

Parms code env))

This is ok, too

If you understand what is going on here, you are in good shape. This is
subtle. If you don’t follow it, ask.

14

9/2/99 14

Baby Scheme interpreter, Making an Environment (I)

Would you prefer…

((x 3) (y 4) (z “hello world”) …) ;association list

Or

((x . 3) (y . 4) (z . “hello world”) …) ;association list of dotted pairs

Or

((x y z …) . (3 4 “hello world”))

Or

#s(x y z ..) vector, possibly extensible = STACK, a primitive in CL

Or

Implicitly secretly using the CL binding mechanism

Or

Use global symbol table + stack of OLD values

Or

(More options if we are compiling.

Note: Scheme environments are not strictly stack discipline. How to
handle?

OPERATIONS: EXTEND ENVIRONMENT, ACCESS/SET values (for Scheme: return as
value)

15

9/2/99 15

Baby Scheme interpreter, the Apply part

Really, we want apply to be something like this

(defun apply(x arglist)

(cond ((primitive-operator-p x) (machine-code x arglist)); no choice

(t (interp (code-of-x) (extend-env (parameters-of x) arglist))

; interpret the sequence of code in x

Norvig’s h ack: just use CL a pply:

(apply (interp (first x) env) ;; (first x) is Cl function!

(mapcar #’(lambda (v) (interp v env))

(rest x))))))))

Norvig implements a total hack because “apply” is a Common Lisp function
which is going to take its first argument, whatever it evaluates to, say the
program +, or #’(lambda(&rest args) (interp whatever))
and will do its thing on the arguments, each of which has been interpreted.
Unfair. It implements ALL OF LISP FREE.
But it works because Norvig’s makes a procedure by putting together
#’(lambda(..) (interp …..)).

16

9/2/99 16

Jumping ahead a bit: A properly tail-recursive version of interp

;; selections from interp in ~fateman/264/lisp/interp2.lisp…..
(defun interp (x &optional env)

"Evaluate the expression x in the environment env.
This version is properly tail-recursive."
(prog ()

:INTERP
(return

(cond
((symbolp x) (get-var x env))
((atom x) x)
((case (first x)

(QUOTE (second x))
(BEGIN (pop x) ; pop off the BEGIN to get at the args

;; Now interpret all but the last expression
(loop while (rest x) do (interp (pop x) env))
;; Finally, rename the last expression as x
(setf x (first x))
(GO :INTERP))

(IF (setf x (if (interp (second x) env)
(third x)
(fourth x)))

;; That is, rename the right expression as x
(GO :INTERP))

;..stuff omitted
))

