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Review what we mean by evaluation or 
interpretation: lambda calculus

• Free vs. bound variables
– (lambda(x)(+ x y))   ; x is bound, y is free
– E[b/a]  or E[aÄb] is the expression E with all 

FREE occurrences of “a” replaced by “b”

• We can find bound/free confusing
– ( (lambda(x) (+ x ((lambda(x)(+ x 7)) 3)) 4)
– The RED outer x occurs free here in red

• ( (lambda(x) (+ x ((lambda(x)(+ x 7)) 3)) 4)
– The GREEN inner x occurs free here in green

• ( (lambda(x) (+ x ((lambda(x) (+ x 7) ) 3)) 4)
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Lambda calculus: alpha conversion

– Replace all free occurrences of x by z, E[z/x] in
(+ x ((lambda(x)(+ x 7)) 3)) producing
(+ z ((lambda(x)(+ x 7)) 3))
.. This is quite different from what we started with
BUT
– ( (lambda(x) (+ x ((lambda(x)(+ x 7)) 3)) 4) IS the same as 
( (lambda(z) (+ z ((lambda(x)(+ x 7)) 3)) 4)
– Changing (lambda(var)E) to (lambda (var’) E[var’/var]) is 

alpha (a) conversion. 
– a conversion is one rule we can use to transform 

expressions to equal expressions.
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Lambda calculus: beta conversion

– Replace all free occurrences of x by z, E[z/x] in
((lambda(x) E )z)) to produce the “meaning” of this 

expression.
e.g. ((lambda(x)(+ x 7)) z)) MEANS  (+ z 7)   

{whatever that means}
– When this rule, beta (b) conversion is applied left-

to-right to tranform a b-redex (lambda(x)E) z) it is 
called b reduction.

– b conversion is another rule we can use to 
transform expressions to equal expressions.
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Lambda calculus: beta conversion II

– Not always simpler: 
• ((lambda(x)(x x)) (lambda(x)(x x)))
• b conversion leaves this unchanged.

– Since an expression can have more than one b
redex, there may be more than one way to reduce 
an expression.

– Church-Rosser, confluence, or diamond property 
(theorem) says if EÍE1 and EÍE2 with different 
sequences, there exists some N such that E1ÍN 
and E2ÍN

– Some strategies will not stop.
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Lambda calculus: beta conversion III

– Consider ((lambda(x)(lambda(y) (x y)))  (y w)).
• b conversion would seem to make this into 
• (lambda(y)( (y w) y)) but that can’t be right… (y 

is not free!) so what to do?
• First do an alpha conversion to 
• ((lambda(x)(lambda(g) (x g)))  (y w)) then to
• (lambda(g)( (y w) g))
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Lambda calculus: Y

• You don’t have “define” in the lambda calculus so how can you use 

recursion? E.g. f=(lambda(g)(lambda(n)(if (zero? n) 1 (* n (g 
(- n 1))))))  how do you get g bound to something ?

• Need a procedure, call it Y such that (Y f) is the desired function. Then we 
can bind g to (Y f) with the application (f (Y f)).  Since f also returns the 
recursive procedure, (Y f) = (f (Y f))

• Remarkably, Y can be defined by
(lambda(f) ((lambda (x)(f (x x)))  (lambda(x)(f  (x x)) which is known as the Y 
combinator. 
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Applicative order reduction defines ordinary 
Scheme

• An answer is a constant, a variable or (lambda …). Anything but an 
application ( (lambda…) …).

• A beta-reduction may be applied only if both the operator and operand(s) 
are already answers, otherwise they can be beta-reduced, and must be.

• Operationally, we typically use left-to-right order, and we don’t make real 
beta-reductions but look up bindings in environments.

• This brings us back to our interpreter, this time in tail-reduced form.
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A properly tail-recursive version of interp

;; selections from interp in ~fateman/264/lisp/interp2.lisp….. 
(defun interp (x &optional env)

"Evaluate the expression x in the environment env.
This version is properly tail-recursive."
(prog ()

:INTERP
(return

(cond
((symbolp x) (get-var x env))
((atom x) x)
((case (first x)

(QUOTE  (second x))
(BEGIN  (pop x) ; pop off the BEGIN to get at the args

;; Now interpret all but the last expression
(loop while (rest x) do (interp (pop x) env))
;; Finally, rename the last expression as x
(setf x (first x))
(GO :INTERP))

(IF     (setf x (if (interp (second x) env)
(third x)
(fourth x)))

;; That is, rename the right expression as x
(GO :INTERP))

;..stuff omitted
))


