CS264/Fall 1999

‘ University of California at Berkeley ‘

CS 264 Implementation of Programming
Languages

/18: Run-time; data representations, types,
pointers, storage allocation

Richard Fateman
Computer Science Division
Fall, 1999

9/29/99

What is a pointer?

* 32 bits (moreor less):
— More: large address space systems,
* 2/32is 4x10°

« Are those bytes you are addressing or words or quad words?

— Less: a gigabyte or two still seems workable
Segmented address spaces of smaller size are unpopular

Relative pointers can be much smaller (Clarke’s empirical
studies)

.

.

.

have 3 trailing 0's, so 29 bits may be enough

9/29/99

If pointers are addresses of double-word aligned objects, they

What is atyped pointer?

+ Room for atype? (Usethose 3 bits? OR)
— Pointer to an INT
« INOB: Oops, not a pointer but an INT RIGHT HERE.. 2730 is 10°
« Pointer to a CONS
« Pointer to something else whose type is apparent somehow otherwise
- BIBOP
« Each object is on a page. Each page has a type
« Limits the size of objects to size(page)-tag
+ Computation to extract? Locality?
— Boundaries
« Inflexible if we must allocation more objects of various sorts.
+ Computation to extract? Locality
— Explicit tag with object. (OK if object is large enough)

9/29/99

Digression: where do you point?

Just because data is aligned on words, doesn’t prevent you
from having pointers to it that are not. E.g. point to the 3
byte and load it via Id r1,-3(r2) etc.

9/29/99

Richard Fateman

CS264/Fall 1999

Digression: CDR coding

A statistically “nearly free” pointer

Assume most CDRs in Lisp are pointers to the next cell.

Or maybe a few cells back or forward from here.

Use atag to say “short pointer”

If necessary, say “we need along pointer” and store THAT
nearby.

If we can’t hack it in place, leave a forwarding pointer to a
larger place.

(Requires a load indirect instruction where the “indirect” bit is
in the DATA, not the INSTRUCTION. (availability? PDP-10
had it, so did Lisp machines).

9/29/99 5

Sometimes the program knows, sometimes
not

« Arrays of known types: double-floats.

« Contents of floating-point registers.

¢ What if avalueis returned from a function?

— “Boxing” values
— Bad situation: (loop (setfr (fr))..) where r needs to be boxed.

9/29/99 6

Hardware solutionsto (+ X y)

« Lisp machine tagged architecture did the add at the same
time as the tags were checked. If the calculation was
erroneous, it is found out in parallel. (What's a lisp
machine?)

* In some RISC systems almost all tag checking can be
hidden: a"squashed delayed branch" is where instructions
are executed while the branch condition is calculated and
the effect of the instructions is canceled if the branch is not
taken.

« Notethat SPARC has add/sub instruction that trap if the
bottom two bits of the operands are not zero, intended to
support tagging for LISP!

9/29/99 7

P.A. Steenkigte: Tags and Run-time Type Checking..

Conclusions: 11 to 24% of a program can be spent in tag checking,
another 8% in tag removal, and 1.5% in tag insertion. About 2/3 of
tag checking can be eliminated by hardware, resulting in a 17%
speedup of Lisp execution on a sample set of 10 programs (heavily
oriented toward lisp list operations).

(in Peter Lee's Topics in Advanced Language Implementation)

9/29/99 8

Richard Fateman

CS264/Fall 1999

Next: Storage Allocation, Garbage Collection

Paul Hilfinger’s notes on the state of garbage collection,
http:/Mww-inst.EECS.Berkeley.EDU/~cs61b/readerl/storage.pdf

(in CS264 class notes, hilfinger-storage.pdf)
Appel’s paper claiming that stack allocation
is SLOWER than heap allocation, at least under certain

conditions.

gc-faster-than-stack.ps

9/29/99 9

Next: Storage Allocation, Garbage Collection

Major discussion of uniprocessor GC::

ftp:/fftp.cs.utexas.edu/pub/garbage/bigsurv.ps
(locally, wilson-bigsurv.ps)

citation for an earlier version of this document, apparently

still being revised:

Wilson, P.R. (Edited by: Bekkers, Y.; Cohen,

J.) Uniprocessor garbage collection techniques. (Memory
Management. International Workshop IWMM 92. Proceedings, St. Malo,
France, 17-19 Sept. 1992.) Berlin, Germany: Springer-Verlag,

1992. p.1-42. xi+524 pp. 74 references.

9/29/99 10

Next: Storage Allocation, Garbage Collection

Paul R. Wilson, Mark S. Johnstone, Michael Neely, David

Boles. 1995-07. Dynamic Storage Allocation: A Survey and Critical
Review. University of Texas at

Austin. <URL:ftp://ftp.cs.utexas.edu/pub/garbage/allocsrv.ps>.

78 pages: storage allocation, more generally including
philosophical as well as historical information.

(If 1 megabyte of RAM is squandered in each of 100 million PCs,
at $1/megabyte that’s $100 million. If 16 meg is squandered, that's

$1.6 billion.) Pick your dollars and your numbers.

class papers/: wilson-alloc.ps, wilson-bigsurv.ps

9/29/99 1

Next: Storage Allocation, Garbage Collection

(class papers) boehmpldi93.ps

Boehm, H.-J. Space efficient conservative garbage collection. SIGPLAN
Notices, vol.28, (n0.6), (ACM SIGPLAN '93 Conference on Programming
Language Design and Implementation, Albuquerque, NM, USA, 23-25 June
1993.)

Here is Boehm's home page with more references

http://reality.sgi.com/boehm_mti/

The harlequin annotated bibliography on Garbage Collection
http://iwww harlequin.com/mm/reference/bib/gc.html

9/29/99 12

Richard Fateman

