
1

8/26/99 1

CS 264 Implementation of Programming
Languages
//2: scanning, parsing//

Richard Fateman
Computer Science Division
Fall, 1999

University of California at Berkeley�

We promised to review this a bit; frankly some of you will have this
fresher in your minds than I; although I have taught the use of Lex and
friends as well as Yacc, I have not used either of them seriously (except
through grad students) in any projects. I have used a yacc equivalent
that generates parsers in LISP. There are at least 3 that you can find by
searching on the internet; unbelievably, last time I looked, I encountered
one that was for sale.

2

8/26/99 2

Traditional model of writing a parser

• Invent a language

• Refine it as you define its grammar

• Mess with the grammar (maybe token set too) until it
has good properties (LALR(1), for example)

• Run the grammar through a parser-generator (YACC,
BISON, …) to get a C program

• Hook up to a scanner (generated by LEX)

• Write augments (etc.) in C.

• Make up for sloppy grammar, ambiguities, etc. by
hacks

How do you invent a language?

Probably you have a collection of utterances that you want to mean
something. Some thought goes into it along the lines of “if I wantXYZ to
mean xyz, then it would be consistent to have XYZ’ mean xyz’. You
certainly don’t want a language in which two interpretations can be
placed on the same utterance.

Huh?

How about this

“I would like a quarter-pounder and a cheeseburger without ketchup”.

Do you get ketchup on the quarter-pounder?

“Please play selections 1 through 10 except 5 and 6”

vs

“Please play selections 1 through 10 except 5 and 11”

Resolve by hacks: 1 through 10 except 11 makes no sense so...

English is not a good programming language. (This might also tell us
that English is not a good language for writing contracts or laws.) [for 25
points, discuss.:)]

3

8/26/99 3

Rationale for this approach

• Everyone knows and loves C and UNIX

• Compactness and speed of parsers is important

• LALR(1) is not much of a restriction

This is sarcasm.

My biases regarding C show.;

Actually LALR(1) is pretty powerful, and it would seem unnecessary to
go beyond its capabilities. Several rather meek languages are not
LALR,

including MATLAB. Mathematica, not so meek, is also not LALR(1).

4

8/26/99 4

A heretical approach

• Write a single scanner
• Write a single parser good for any Context Free

Grammar
• Write a CFG/augmented for the language of

interest
• Plausible? only if the parser is

– fast enough
– small enough
– compared to what?

I would not have said this even 10 years ago. Machines were smaller
and slower.

Today there is still a desire to make programs small but since they then
are hooked up with humongous libraries to do even trivial things, the
time and effort put into saving 100kbytes by rolling your own special
code seems hard to justify.
Ah well. The life of an academic?

5

8/26/99 5

Lexical analysis (scanning) is very routine

• Yes, there are programs (LEX) to help
• Some languages have subtle scanning

problems requiring custom programming
– Matlab (t’ or ‘hello world’)

– Mathematica (x/.x->y)

– FORTRAN (DO3I=1.2 vs. DO3I=1,2)

• Just reuse code!

I’ve had to write 3 or 4 scanners in the past decade, and they all have
had the same basic code. And each one has had screw cases.

 Mathematica has been the most complicated. “Real” math is actually
different: almost all symbols in math are single tokens. That’s why you
run out of letters and use Greek (etc.) The exceptions are cos, sin, etc.

Continuation cards?

Comment conventions?

Actually, nested comments /* /* this is a comment */ is this also */
require mechanisms beyond the capacity of a finite state machine. Can
LEX handle this? (yes, but introducing a counter is required)

IF(I,J)=3 is an array assignment

IF(I) then x=5 else y=5 end if is not

“Tokenizing Fortran is such an irregular task that it is frequently easier to
write an ad hoc lexical analyzer for Fortran in a conventional
programming language than it is to use an automatic lexical analyzer
generator.” Red Dragon p 113.

In Matlab, f is a function or script if there is a file f.m nearby.

Think about why this is the case that people design screw cases into
languages.

6

8/26/99 6

How hard is it to get Lisp? To learn Lisp?

• Visit http://www.elwood.com/alu/
the Association of Lisp Users
– online texts, e.g. CLtL (Steele)

– online standard

– online tutorials

• And/or Read Paul Graham’s ANSI
Common Lisp

• And/or Norvig’s Paradigms of AI Pgmming

A brief sales pitch. About half the class seems to know Scheme/Lisp.
Some people favor C++, ML.

7

8/26/99 7

How hard is it to write a Lisp scanner?

50 lines of lisp, + comments. In 264/lisp/lex.cl
Input
abc+begin(r*s^23)end
Output: 11 tokens,
abc + begin |(| r * s ^ 23 |)| end
or more verbosely,
(SYMBOL abc) (ARITH +) (KEYWORD begin) (LPAR
|(|) (SYMBOL r) (ARITH *)(SYMBOL s) (ARITH
^) (NUMBER 23) (RPAR |)|) (KEYWORD end)
And the character type and symbol table are free.
(Compare to C, Java, Perl, ?)

Look at the code; explain it line by line. (Apologies to those who know lisp or
learned it since Tuesday..) Answer questions. Point to places to learn lisp: get
a CD or download ACL lite from Franz.com. On the internet, see the

http://www.franz.com/support/docs/5.0/ansicl/ansicl.htm for the standard

(probably not readable)

CLTL2 (Steele)

http://almond.srv.cs.cmu.edu/afs/cs.cmu.edu/project/ai-
repository/ai/html/cltl/cltl2.html

8

8/26/99 8

Now on to parsing per se

• The formalisms are worth getting used to
even if we are generally informal...
– A grammar is a 4-tuple G = (N, S, P,S)

• N is a finite set of nonterminal symbols

• S is a finite set of terminal symbols

• P is a set of productions a�b

• S (from N) is the start symbol

• (Can you explain a, b in the language of
strings, etc)

Alpha is a string in general, with at least one non-terminal. For a
context-free grammar, Alpha is a string of exactly one non-terminal.
Beta is a string of any length. Write this out as sets, regular
expressions.

Alpha in N, beta in (sigma U N)*

empty string notation: empty set notation. Sets of strings, abuse of
notation with singleton sets represented by the string in them...

Many shorthands for abbreviating groups of rules, e.g.

A := r | s | t

B:= a {+b)*

C:=

Review chapter 3 and 4 in Red Dragon

9

8/26/99 9

A simple grammar

Rules
S � V := E
E � T
E � T + E
T � F
T � F * T
F � (E)
F � V
V � id {=… a,b,c}

Start symbol S

Terminals id, + *, :=, (,)

Non-terminals S,V,E,T,F

Sample sentence: a:=b*(c+d)+e

Notes: we should discuss extended BNF, Kleene star,
alternation, <>, [],

This grammar distinguished the precedence levels of + and *. A
grammar that looks like E->E op E with op -> + | *

generates strings that are ambiguous. The sample grammar in the lisp
directory “parser2” uses layers and layers of renaming. Traditionally we
use E for expression, T for term, F for Factor, P for Primary, V for
variable as mnemonics.

10

8/26/99 10

A sample parse tree

Rules
S � V := E
E � T
E � T + E
T � F
T � F * T
F � (E)
F � V
V � id {=… a,b,c}

a := b * (c + d)

id id id id

V V V V

F F F

T T

E

E

F

T

T

E

S

What to say here.. This is a kind of boring tree; I wonder if I sketched it
out without typos. Computers are much better at doing this. The long
derivation of single rules re-writing nonterminal as another nonterminal
does not convey much info (actually, we just did this for setting
precedences) and is therefore wasteful of our paper and energy.

11

8/26/99 11

A sample parse tree, various representations

a := b * (c + d)

id id id id

V V V V

F F F

T T

E

E

F

T

T

E

S
(s (v (id a)) := (e(t (f (v (id b))) * (t(f “(“ e
(t (f (v (id c)))) + (e(t(f(v(id d)))))) “)”)))))

Or, omitting all “single productions”

(s (a := (t b * (f “(“ (e c + d))”)”))

Or if we omit non-terminals and
move “infix” ops to the front, and
omit “(“ “)”,

(:= a (* b (+ c d))) ...

If we allow a computer to generate the tree, but in some internal form,
we can fiddle around for the most convenient computational expression.

The nice thing about lisp in this regard is that one can ordinarily just print
a tree with (print x) and read a tree from a file (should you be obliged to
write it to a file, which is unlikely…) by (setf x (read stream)) where
stream is an open file descriptor.

12

8/26/99 12

One way of representing the grammar in Lisp

• Based on Norvig’s code: /lisp/syntax1.lisp

Rules
S � V := E
E � T
E � T + E
T � F
T � F * T
F � (E)
F � V
V � id {=… a,b,c}

(defparameter *gram*
’((S -> (var EQUALSIGN expr))
 (expr -> (term))
 (expr -> (term PLU expr))
 (term -> (factor ASTER term))
 (term -> (factor))
 (factor ->(var))
 (factor -> (LPAR expr RPAR))
 (EQUALSIGN -> =)
 (ASTER -> *) (PLU -> +)
 (LPAR -> \() (RPAR -> \))
 (var -> a)
 (var -> b)
 (var -> c)
))

This is a bit clumsy because we are not using any of the shorthand
notations allowed (Kleene star, meta brackets, alternation). Routines to
transform grammars used to be a part of this course in the dark ages.
Remove erasing rules, convert to various “normal forms” … e.g. one
could make all rules have only one or two symbols on the right hand
side.

Is it therefore not an essential limitation to Norvig’s approach.

(Also, if we have very elaborate rule meta grammar, we are faced with
placing augments in strange metarule places…)

13

8/26/99 13

The context-free parser

• Unrestricted except not left recursive/
non-erasing

• ambiguity is permitted (hence may be
exponential in time)

• Key idea: memoization = tables
• Exact analysis: comparable to Early’s

algorithm. O(n^3) time, O(n^2) space but
can be made O(n) time for finite look-
ahead grammars. (project: prove all this)

• 264/papers/cfparser.ps

A defense of Norvig’s parser.

14

8/26/99 14

CFG Parsing via tables = memoization

One of the hazards in naïve parsing is that one encounters the need to
explain (parse) the same subexpression repeatedly when explaining a
super-expression. If you have once figured out how to parse b*c, you
can save that information and retrieve it without recomputation. Some
parses of b*c will result in a dead end, but that’s OK.
Building tables is a way of pre-computing or predicting parses in a
systematic way. Norvig’s approach is that by just jumping in to the
parser we will encounter the situations solved by the table entries, parse
them from first principles and then by remembering the relevant results,
end up with a parser essentially identically with one developed by the
tabular methods.

More defense. I’ve temporarily abandoned the notion that this is a slide
for projection:

it has too much printing. Sorry./

15

8/26/99 15

A digression on memoization

In a functional programming environment, f(x) for a particular x must
always return the same value. If f(x) is expensive to compute in
general, replace f(x) with a program that does this:
f(x):=
 If we have previously computed f for this x, return the
answer stored in f_hashtable[x].
 If we have not computed f for this x, now compute v=f(x).
Store v in f_hashtable[x]. Return v.

For some languages (e.g. Lisp, scheme) it is easy to write a function
Memoize that takes ANY function f, and replaces it with a memoized
version of f, according to this template above. It helps to have first-class
functions, built in hashtables.

This is covered in Abelson/Sussman. But to make it really work you
need to have very fast hash coding compared to the function
computation.

A subtlety is to make sure that recursive functions use memoization
when they call themselves. E.g. memoizing f with

f(x):= if (g(x)) then k else h(f(x-1)) must be changed to

fmemo(x):= … if (g(x)) then k else h(fmemo(x-1))… by some uniform
method. Lisp gives the programmer access to the function binding of a
name.

16

8/26/99 16

Parsing is tree building with “dominoes”

Or we could try building from here, parse the string to the
right, or go build upward. Remember successful sub
parses.

a := b * (c + d)

We could try to build down..

s

v := E

This is the idea of the domino

Here is the input line

Our goal is to build that tree with S at the root, the input at the bottom. With no dangling parts

It is harder and more tedious to draw these things with a drawing
program than freehand. But the drawings really don’t look too neat by
hand…

The dominoes can be put together to build a whole tree, and I haven’t
draw that here except by implication with …l

17

8/26/99 17

The structure of the CFG parser (I):

(defun parse (words)
 "Bottom-up parse, returning all parses of any prefix of words."
 (unless (null words)
 (mapcan #’(lambda (rule)
 (extend-parse (rule-lhs rule) (list (first words))
 (rest words) nil))
 (lexical-rules (first words)))))

Words = list of tokens provided by the scanner. All parses of a prefix of
this list are found. If there are pieces “left over” that is ok if you are not
trying to match up to “S” but are somewhere in the middle of the tree.

18

8/26/99 18

The structure of the CFG parser (II):

(defun extend-parse (lhs rhs rem needed)
 "Look for the non-terminals needed to complete the parse."
 (if (null needed)
 ;; If nothing needed, return parse and upward extensions
 (let ((parse (make-parse :tree (new-tree lhs rhs) :rem rem)))
 (cons parse
 (mapcan
 #’(lambda (rule)
 (extend-parse (rule-lhs rule)
 (list (parse-tree parse))
 rem (rest (rule-rhs rule))))
 (rules-starting-with lhs);; possibly building upward

)))
 ;; otherwise try to extend rightward
 (mapcan
 #’(lambda (p)
 (if (eq (parse-lhs p) (first needed));; rule matches input
 (extend-parse lhs (append1 rhs (parse-tree p))
 (parse-rem p) (rest needed))))
 (parse rem);; a list of ways of parsing rem

)))

Whew. This is a dense program. Rem = words unparsed. Needed =
other parts of the RHS of a rule. E.g. For E ->T+E needed would be +
E, then E, …

Note that ALL ways of extending a parse are computed.

