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What is Garbage? Who cares about it?

• Garbage: storage that cannot be referenced from the language 
model at a particular time, (but is not on a “list” of available
storage)

• If you generate it and don’t collect it you may run out of 
storage as your program continues to run.

• If your program is short running and you have lots of storage, 
you can just fake it.

• Long running programs + leaks = crashes
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Classic Mark and Sweep GC

• Out of storage? Then Start from Roots;
– Values of names that can be read in  (looked up in symbol table)

– Active values on the stack

– Active values in registers

• Trace anything accessible from a root, and mark it
• Sweep through memory: anything unmarked is put on the free 

list.
• Cost  (all cells same size, various other simplifications)

– A=number of reachable cells

– M=number of cells that must be swept

– M-A = number of cells reclaimed

(C1*A+C2*M)/(M-A) = average cost for freeing a cell.
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Classic Mark and Sweep GC: asymptotic 
costs

• Cost  (all cells same size, various other simplifications)
– A=number of reachable cells

– M=number of cells that must be swept

– M-A = number of cells reclaimed

(C1*A+C2*M)/(M-A) = average cost for freeing a cell

Mark and Sweep historically has been guilty of 
bad real-time performance: it must stop useful / 
interactive computation during GC. How long 
might this be?
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Classic Copying (2-space) GC

• Start from Roots;
– Values of names that can be read in  (looked up in symbol table)
– Active values on the stack

– Active values in registers

• Two spaces: FROM and TO
• Trace anything accessible (in FROM) space and copy it to TO space.  

(forwarding pointers, etc. ) 
• When complete, All live structure is in TO space.
• Reverse FROM and TO spaces and declare FROM space “the free 

list”.
Cost  (all cells same size, various other simplifications) {M is half size}

– A=number of reachable cells
– M-A = number of cells reclaimed
(C1*A)/(M-A) = average cost for freeing a cell.
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Explicit Freeing (including popping an entry 
off a stack)

• Cost  (all cells same size, various other simplifications)
– F=number of cells to be freed.

– Simply proportional to F: c3*F

– When is copying GC faster?  When F

C3*F>(C1*A)/(M-A)  when  M/A > C1/(C3*F)+1

If we can make M large (buy more memory!) the 
conclusion is Copying GC is faster than Stack 
allocation.

Do we believe Appel’s argument? 

Is it somehow irrelevant?
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Reference Counting

• Almost as old as GC (1960, REFCO)
• Higher cost, but real-time distributed with processing

– A=B increments B’s count, 

– A=C then decrement’s B’s count, increment’s A’s

• Extra burden of storage
– How many pointers to a given cell?

– Possibility of abbreviation (0,1,2, many refs)

• Misses Circular Lists (red herring
• Used by Mathematica, Maple,
• More popular for (say) file references
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GC implementation issues (historically)

• Mark bits?
• Stack: how much is needed? (VM to rescue?)
• When can GC happen ? {stack etc must be “legal”}
• Paging strategies/ Locality of memory for Lisp
• Responsiveness (Interactive requirements)
• Benchmarks that lie
• Cost of memory vs. computation
• (recently) Imperfect strategies
• Persistent storage
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GC implementation issues (recently)

• CONS cells  Å more irregular structures
– Where are the pointers?

– What about Union data types

• GC in languages not originally designed for GC
– C, C++, 

– various experimental Algol-60 descendants

• GC + “restricted” C++ (etc)
• Partially GC’d + partially explicit memory management
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GC variants

• Real time, Incremental
• Parallel (vs. Uniprocessor)
• Hardware assists
• Generational
• Conservative
• Interaction with persistent storage (databases)
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Real time, Incremental

• Rationale:  how much pause is OK
– Masked in other activities?
– Short in absolute terms (<250ms?)

• Old systems, slow CPU, slow memory, virtual memory
– Embarrassing behaviors

• Approach:  
– mark a little at each allocation, depending on how close you are to 

running out of memory
– 3-color of forest, starting from roots. Known free; possibly free.
– Details require careful analysis

• mutation / collection alternate in time
• Overall efficiency relatively poor.
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Parallel (vs. Uniprocessor)

• Mutation vs collection at the “same” time
• Requires synchronization; basic idea is to force mutator to 

wait (rarely).
• Efficiency gained by parallel processing may be masked by 

loss from memory behavior
• Large memory systems proposals (Garbage Collection by 

garbage truck)
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Parallel: one method

• Assume OS can temporarily read-protect a block of 
memory so that when a mutator attempts to read, it will be 
interrupted.

• If, during a copy, a mutator process attempts to follow a 
pointer from as-yet-unprocessed “FROM” space, it will not 
know about forwarding to “TO” space. This is bad.  So we 
block it with read-protect, and allow the copying to 
continue.
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Hardware assists

• Extra mark bits for memory (vs. mark blocks)
• Validity bits (“this is a pointer”)in memory and registers
• Forwarding pointers
• Hashed pointers (with CDR-coding and forwarding)
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Generational

• A real win.  Variously claimed to have been invented by 
MIT and UCB (Unger)

• Reduces time (could be considered an approach for real-
time, though not indefinitely) 25% Å 3% of time is typical

• Reduces memory activity
• Generally quite efficient: Avoids traversing long-lived 

objects, furiously collects recently allocated stuff.
• Dominates implementations in Smalltalk, Lisp
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Generational: the idea

• Divide objects into generations, each in separate memory.
• New objects are born into newest (0) generation
• When the “to” space fills up, copy live stuff into older 

generation (1). 
• Objects that survive (say) 2 GCs are copied into (“tenured”) 

generation (2).  
• Observed: objects die young.
• Usually ignore tenured objects for tracing. They point only 

to even older stuff, also tenured.  (Mildly false, must 
correct)

• If we run out space, we may have to do multi-generation 
GC
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Generational: the idea

• We said ignore tenured objects for tracing. They point only 
to even older stuff, also tenured. 

• The problem:  IF you destructively alter an old object X, 
then X may  point to a youngster Y in Gen (0).  X must be 
traced to prevent Y from being collected.

• Solution: put address of Y in a “remembered” list so it is not 
deleted

• (Y may get  falsely tenured, etc.  Eventually forcing a full 
GC)

• Parameters:  how many generations, how large, etc. allow 
for tuning, even dynamically.
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Conservative GC

• Use GC for languages like C or C++.
• Big idea: If it looks like a pointer, trace it.
• If you trace stuff by mistake, what happens?

– You retain random stuff in memory because you thought there was 
a pointer to it

– You waste some time tracing through random stuff

• Where are the roots? (Potentially)
– Data space: the values of variables allocated in local stack

– Global data space

– Machine registers
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Conservative GC details

• What is not a pointer?
– Wrong bit pattern (alignment)

– Anything in a location that used to have a wrong bit pattern

– Wrong content (alignment OK, but out of range)

• What IS a pointer?
– Everything else

• What about structures, arrays, etc?
– It would be nice to know when you have arrays of floats

– It’s not necessary though.
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Conservative GC details

• Problems (with pointer recognition):
– Pointers may be concealed via arithmetic or typing

– Pointers may be concealed outside the program space (other 
processes?)

– Locations may be invalid / blacklisted and then made valid?

• Language issues:  pointers to middle of structures
– Presumably *ptr-4 is a header with info on structure sizes, if not 

types

– Forbid “&” operation?
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Conservative GC details

• Other problems
– Copying / compacting is not supportable, so memory fragmentation

may be a problem.

– stack space  used by the scanning could be excessive?

– Scan is still needed to find unmarked items, touching garbage 
memory locations.
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Interaction with persistent storage (databases)

• Different world view, but consider “weak pointers”
• Usual implementation idea is that you have a cache of 

pointers to stuff, say in a hash-table that would get you 
rapid access to material X, but the presence of X in the 
hash-table doesn’t mean necessarily that X is live. Only the 
presence of a “strong” pointer to X indicates that.

• Don’t trace with weak pointers as roots
• If weak pointer values are “forwarded”, or marked, then 

update, else change them to nil.
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Digression: Mathematica, the Language

• Generally “functional” and “symbolic”
• Object-oriented by generic functions, with patterns

f[x_] := x+2

f[x_,y_]:= x+y+2  /* 2 different args */

G[x_,x_]:= foo[x]

G[x__]:= bar[x] /* list */

H[a|b]:= p

H[a_*b_] :=TIMES

H[x_Integer]:= Abs[x]

H[x_?MyTest]:=  Hello[x]
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Digression: Mathematica, the Language

• Symbolic values: how do deal with them?
• Evaluate zero times “implicitly quoting”
• Evaluate one time  “usual rules” e.g. in Lisp.
• Evaluate (e.g. substitute) until “nothing changes.”

y= g[x]+h[z]     /* g undefined */

define g; what is y?

Define h; what is y?

Problem: if you always re-evaluate y each 
time you mention it, and y is some hairy 
structure with lots of function 
applications, then checking them all out 
can get slow.
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Digression: Mathematica, the Language

• Heuristic solution in Mathematica: (apparently secret)
• Chronological dependencies
• Every variable has a time stamp (when last changed)
• Every variable has a dependency vector (what variables it 

depends upon)
• When V’s value is needed, compare its time stamp with  

the time stamps of its dependency vector.  If it is newer, 
then it can’t have changed.

• Otherwise, re-evaluate and update V’s time stamp.
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Digression: Mathematica, the Language

• We lied a bit.
• Every variable V has a dependency vector (includes 

“pages” that hold names that V depends upon)
• When V’s value is needed, compare its time stamp with  

the time stamps of its dependency vector.  If it is newer, 
then V it can’t have changed.

• Otherwise, re-evaluate and update V’s time stamp.
• Problem: if something ELSE on one of those pages is 

changed, then a re-evaluation will occur. Perhaps with side 
effects. Apparently page assignments are nondeterministic.
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Digression: Mathematica, the Language

v := g[x]+h[x]; 

h[x_?Tryit]:= nomatter;

Tryit[x_] := Block[{},Print[“hello”]; 
z=z+1;False]  /* increments z, prints 
hello, and always fails */

– The value of z cannot be known for sure.. If 
something on h’s page is changed, the next time 
we look at v, z will be incremented.  Oh well.
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Digression: Mathematica, the Language

Y= Table[I,{I,0,size}] 

Do [ Y[[j]]=Y[[j]]+1, {j,1,10}] /* only 10 iterations */

Loop time depends on how large the table is. A reference 
to Y[[2]] means that Y[[1]] … Y[[1000]] must all be 
evaluated since Y[[j]]+1 depends on Y and Y was changed…

Size= 10: time = 0.0 sec

1000       0.01

10000      0.06

100000     0.61


