CS264/Fall 1999

‘ University of California at Berkeley ‘

CS 264 Implementation of Programming
Languages
119: Run-time; storage allocation, continued

Richard Fateman
Computer Science Division
Fall, 1999

10/5/99 1

What is Garbage? Who cares about it?

Garbage: storage that cannot be referenced from the language
model at a particular time, (but is not on a “list” of available
storage)

If you generate it and don’t collect it you may run out of
storage as your program continues to run.

If your program is short running and you have lots of storage,
you can just fake it.

Long running programs + leaks = crashes

10/5/99 2

Classic Mark and Sweep GC

« Out of storage? Then Start from Roots;
— Values of names that can be read in (looked up in symbol table)
— Active values on the stack
— Active values in registers
« Trace anything accessible from a root, and mark it
« Sweep through memory: anything unmarked is put on the free
list.
« Cost (all cells same size, various other simplifications)
— A=number of reachable cells
— M=number of cells that must be swept
— M-A = number of cells reclaimed
(C1*A+C2*M)/(M-A) = average cost for freeing a cell.

10/5/99 3

Classic Mark and Sweep GC: asymptotic
costs

« Cost (all cells same size, various other simplifications)
— A=number of reachable cells
— M=number of cells that must be swept
— M-A = number of cells reclaimed

(C1*A+C2*M)/(M-A) = average cost for freeing a cell

Mark and Sweep historically has been guilty of
bad real-time performance: it must stop useful /
interactive computation during GC. How long
might this be?

10/5/99 4

Richard Fateman

CS264/Fall 1999

Classic Copying (2-space) GC

« Start from Roots;
— Values of names that can be read in (looked up in symbol table)
— Active values on the stack
— Active values inregisters

+ Two spaces: FROM and TO

(forwarding pointers, etc.)
+ When complete, All live structure is in TO space.
+ Reverse FROM and TO spaces and declare FROM space “the free
list".
Cost (all cells same size, various other simplifications) {M is half size}
— A=number of reachable cells
— M-A = number of cells reclaimed
(C1*A)/(M-A) = average cost for freeing a cell.

10/5/99 5

« Trace anything accessible (in FROM) space and copy it to TO space.

Explicit Freeing (including popping an entry
off a stack)

« Cost (all cells same size, various other simplifications)
— F=number of cells to be freed.
— Simply proportional to F: ¢c3*F
— When is copying GC faster? When F
C3*F>(C1*A)(M-A) when M/A > C1/(C3*F)+1

If we can make M large (buy more memory!) the
conclusion is Copying GC is faster than Stack
allocation.

Do we believe Appel's argument?

Is it somehow irrelevant?

10/5/99

Reference Counting

« Almost as old as GC (1960, REFCO)
« Higher cost, but real-time distributed with processing
— A=B increments B's count,
— A=C then decrement’s B's count, increment's A's
« Extra burden of storage
— How many pointers to a given cell?
— Possibility of abbreviation (0,1,2, many refs)
« Misses Circular Lists (red herring
* Used by Mathematica, Maple,
« More popular for (say) file references

10/5/99 7

GC implementation issues (historically)

Mark bits?

Stack: how much is needed? (VM to rescue?)
When can GC happen ? {stack etc must be “legal}
Paging strategies/ Locality of memory for Lisp
Responsiveness (Interactive requirements)
Benchmarks that lie

Cost of memory vs. computation

(recently) Imperfect strategies

Persistent storage

10/5/99

Richard Fateman

CS264/Fall 1999

GC implementation issues (recently)

* CONS cells - more irregular structures
— Where are the pointers?
— What about Union data types
« GC in languages not originally designed for GC
— C, C++,
— various experimental Algol-60 descendants
* GC + “restricted” C++ (etc)
« Partially GC'd + partially explicit memory management

10/5/99 9

GC variants

10/5/99

Real time, Incremental

Parallel (vs. Uniprocessor)

Hardware assists

Generational

Conservative

Interaction with persistent storage (databases)

10

Real time, Incremental

« Rationale: how much pause is OK
— Masked in other activities?
— Short in absolute terms (<250ms?)
« Old systems, slow CPU, slow memory, virtual memory
— Embarrassing behaviors
« Approach:
— mark a little at each allocation, depending on how close you are to
running out of memory
— 3-color of forest, starting from roots. Known free; possibly free.
— Details require careful analysis
< mutation / collection alternate in time
« Overall efficiency relatively poor.

10/5/99 1

Parallel (vs. Uniprocessor)

10/5/99

Mutation vs collection at the “same” time

Requires synchronization; basic idea is to force mutator to
wait (rarely).

Efficiency gained by parallel processing may be masked by
loss from memory behavior

Large memory systems proposals (Garbage Collection by
garbage truck)

Richard Fateman

CS264/Fall 1999

Parallel: one method

« Assume OS can temporarily read-protect a block of
memory so that when a mutator attempts to read, it will be
interrupted.

« If, during a copy, a mutator process attempts to follow a
pointer from as-yet-unprocessed “FROM” space, it will not
know about forwarding to “TO” space. This is bad. So we
block it with read-protect, and allow the copying to
continue.

10/5/99

13

Hardware assists

« Extra mark bits for memory (vs. mark blocks)

« Validity bits (“this is a pointer”)in memory and registers
« Forwarding pointers

« Hashed pointers (with CDR-coding and forwarding)

10/5/99 14

Generational

« Areal win. Variously claimed to have been invented by
MIT and UCB (Unger)

Reduces time (could be considered an approach for real-
time, though not indefinitely) 25% - 3% of time is typical

Reduces memory activity

Generally quite efficient: Avoids traversing long-lived
objects, furiously collects recently allocated stuff.

Dominates implementations in Smalltalk, Lisp

10/5/99

Generational: the idea

Divide objects into generations, each in separate memory.
New objects are born into newest (0) generation

When the “to” space fills up, copy live stuff into older
generation (1).

Objects that survive (say) 2 GCs are copied into (“tenured”)
generation (2).

Observed: objects die young.

Usually ignore tenured objects for tracing. They point only
to even older stuff, also tenured. (Mildly false, must
correct)

If we run out space, we may have to do multi-generation
GC

10/5/99 16

Richard Fateman

CS264/Fall 1999

Generational: the idea

We said ignore tenured objects for tracing. They point only
to even older stuff, also tenured.

The problem: IF you destructively alter an old object X,
then X may point to a youngster Y in Gen (0). X must be
traced to prevent Y from being collected.

Solution: put address of Y in a “remembered” list so it is not
deleted

(Y may get falsely tenured, etc. Eventually forcing a full
GC)

Parameters: how many generations, how large, etc. allow
for tuning, even dynamically.

10/5/99

17

Conservative GC

* Use GC for languages like C or C++.
« Big idea: If it looks like a pointer, trace it.
« If you trace stuff by mistake, what happens?

— You retain random stuff in memory because you thought there was
a pointer to it

— You waste some time tracing through random stuff
* Where are the roots? (Potentially)
— Data space: the values of variables allocated in local stack
— Global data space
— Machine registers

10/5/99 18

Conservative GC details

* What is not a pointer?
— Wrong bit pattern (alignment)
— Anything in a location thatsed to have a wrong bit pattern
— Wrong content (alignment OK, but out of range)

* What IS a pointer?
— Everything else

« What about structures, arrays, etc?
— Itwould be nice to know when you have arrays of floats
— It's not necessary though.

10/5/99

19

Conservative GC details

« Problems (with pointer recognition):
— Pointers may be concealed via arithmetic or typing
— Pointers may be concealed outside the program space (other
processes?)
— Locations may be invalid / blacklisted and then made valid?
« Language issues: pointers to middle of structures
— Presumably *ptr-4 is a header with info on structure sizes, if not
types
— Forbid “&" operation?

10/5/99 20

Richard Fateman

CS264/Fall 1999

Conservative GC details

« Other problems
— Copying / compacting is not supportable, so memory fragmentation
may be a problem.
— stack space used by the scanning could be excessive?
— Scan is still needed to find unmarked items, touching garbage
memory locations.

10/5/99 21

Interaction with persistent storage (databases)

Different world view, but consider “weak pointers”

Usual implementation idea is that you have a cache of
pointers to stuff, say in a hash-table that would get you
rapid access to material X, but the presence of X in the
hash-table doesn’t mean necessarily that X is live. Only the
presence of a “strong” pointer to X indicates that.

Don't trace with weak pointers as roots

If weak pointer values are “forwarded”, or marked, then
update, else change them to nil.

10/5/99 22

Digression: Mathematica, the Language

« Generally “functional” and “symbolic”
« Object-oriented by generic functions, with patterns
flx_] := x+2
flx_,y_]:= x+ty+2 [* 2 different args */
g x_,x_]:= foo[x]
gx__]:=bar[x] /* list */
Halb]:=p
Ha_*b_] :=TIMES
H[x_l nteger]: = Abs[x]

H x_?M/Test]:= Hell o[x]
10/5/99 23

Digression: Mathematica, the Language

« Symbolic values: how do deal with them?

« Evaluate zero times “implicitly quoting”

« Evaluate one time “usual rules” e.g. in Lisp.

« Evaluate (e.g. substitute) until “nothing changes.”

y= g[x] +h[z] /* g undefined */
define g; what is y?
Define h; what is y?

Problem if you always re-eval uate y each
time you nention it, and y is sone hairy
structure with lots of function
appl i cations, then checking themall out

can get slow
5/99

10/t 24

Richard Fateman

CS264/Fall 1999

Digression: Mathematica, the Language

Heuristic solution in Mathematica: (apparently secret)
Chronological dependencies

Every variable has a time stamp (when last changed)
Every variable has a dependency vector (what variables it
depends upon)

When V's value is needed, compare its time stamp with
the time stamps of its dependency vector. If it is newer,
then it can’t have changed.

Otherwise, re-evaluate and update V's time stamp.

10/5/99

Digression: Mathematica, the Language

We lied a bit.

Every variable V has a dependency vector (includes
“pages” that hold names that V depends upon)

When V's value is needed, compare its time stamp with
the time stamps of its dependency vector. If it is newer,
then V it can’t have changed.

Otherwise, re-evaluate and update V's time stamp.
Problem: if something ELSE on one of those pages is
changed, then a re-evaluation will occur. Perhaps with side
effects. Apparently page assignments are nondeterministic.

10/5/99 26

Digression: Mathematica, the Language

— The value of z cannot be known for sure.. If
something on h's page is changed, the next time
we look at v, z will be incremented. Oh well.

v 1= g[x]+h[x];
h[x_?Tryit]:= nomatter;

Tryit[x_] := Block[{},Print[*hello™];
z=z+1;False] /* increments z, prints
hello, and always fails */

10/5/99

27

Digression: Mathematica, the Language

Y= Table[l,{l,0,size}]
Do [Y[[jl1=Y[[jl1+1, {j,1,10}] /* only 10 iterations */

Loop time depends on how | arge the table is. A reference
to Y[[2]] means that Y[[1]] ... Y[[1000]] must all be
evaluated since Y[[j]]+1 depends on Y and Y was changed...

Size=10: time = 0.0 sec

1000 0.01
10000 0.06
100000 0.61
10/5/99 28

Richard Fateman

