
1

11/16/99 1

Parallel Computing Languages
(a selective viewpoint)

Richard Fateman
Computer Science Division, EECS
University of California, Berkeley

11/16/99 2

Subdivision of possibilities

• Large grain parallelism: PL links to OS
(www.openmp.orgAPIs for Windows, UNIX)

• Explicitly parallel vector (SIMD): languages like
HPF or CM-Lisp

• Small grain parallelism (MIMD), typically with
shared memory: anything goes

• Distributed (network) computation, usually
MIMD: lots of activity

• Intermediate levels: light-weight threads

11/16/99 3

Subdivision of approaches

• Everything can be executed in parallel
unless I say otherwise.

• Nothing can be executed in parallel unless I
say otherwise.

• The compiler should figure out what can be
executed in parallel

11/16/99 4

A few issues for evaluation

• Beauty, simplicity, completeness, fairness

• Robustness (many processors Å some fail)

• Relationship to real architectures

• Throughput
– Speed (result appears fast)

– Cost (many processors doing useful work)

– Scaling (linear, super-linear?)

• But probably, Just Speed (HPC is big bucks)

2

11/16/99 5

A few implementations worth talking
about..

• Fortran 90 / HPF
• Math-P (one of several Matlab-like parallel

systems)
• Parallel lisps

– Qlisp
– Multilisp
– Commercial shared memory
– Connection Machine (CM2) Lisp

• Titanium? Split C? C*, Data Parallel C

11/16/99 6

Fortran 77 Å Fortran 90
This is Fortran 77 code

subroutine demo(a,b,c,n)
dimension a(n), b(n), c(n)
common /ecom/scratch(10000)
do 100 i = 1, n
a(i) = b(i) + c(i)
if (a(i).gt.100.0) then
a(i) = a(i) + scratch(i)
go to 100
endif
c(i) = a(i)*2

100 continue
end

It’s also Fortran 90 code, since Fortran 90 is a superset of Fortran 77…. but

11/16/99 7

Fortran 77 Å Fortran 90
This is (more idiomatic) Fortran 90 code
module Vecom
real, dimension(10000) :: scratch

end module Vecom

subroutine demo(a, b, c, n)
USE Vecom
integer n ///dummy arguments
real, dimension(n) :: a, b,c

integer :: I ///local variables
a = b + c

where (a > 100.0)
a = a + scratch(:n) ///notable change

elsewhere
c = a*2

end where
end subroutine demo

11/16/99 8

An aside: Fortran 77 Å Fortran 90
conversion $

From PSR’s web page…

VAST/77to90’s price is meter based. That is, the price is determined based
on the number of Fortran 77 lines that VAST/77to90 successfully translates
to Fortran 90. VAST/77to90 keeps a running total of the number of Fortran
77 input lines that it has translated. Once this total exceeds the level that
you purchased, you will need to get a new license if you would like to do
further translation. The introductory price is only $125 for 2,500 lines.

3

11/16/99 9

High Performance Fortran
Why HPF? (e.g. from VAST-HPF) (Pacific-Sierra Research)

HPF is an extension to Fortran 90 that allows programmers to write efficient
code for a distributed memory parallel system. A properly constructed HPF
program will run efficiently on many kinds of parallel systems, with few or no
coding changes. It is much easier to understand and maintain than other
programming models for distributed parallel systems, such as directly coding
in calls to a message passing library. In fact, for most systems VAST-HPF
generates calls to message-passing routines in place of the original HPF code.

11/16/99 10

HPF includes (1) :

PROCESSORS directive; describes the number and structure of the
processors.
TEMPLATE directive; describes an abstract index space to be aligned
with other arrays.
ALIGN directive; describes how array elements match up in memory.
DISTRIBUTE directive; describes which array dimensions are
distributed, and whether they are BLOCK, CYCLIC, or both.
DYNAMIC directive; needed to declare arrays that can have their
alignment or distribution changed at run-time with the REALIGN and
REDISTRIBUTE directives.
INDEPENDENT directive; used to declare iterations of a loop to be
independent of each other.

11/16/99 11

HPF includes (2):

FORALL construct; used to specify parallel array element assignments.
PURE procedures; used to mark procedures that have no side effects
and that can be called in parallel within loops.
EXTRINSIC procedures; used for procedures outside of HPF (in other
languages, for instance).
SEQUENCE directive; used to mark situations that depend on the
order of variables or elements in memory.
Additional intrinsics, including numerous new array intrinsics, inquiry
functions, etc.

11/16/99 12

PSRV’s suggestions on how to convert:

There are three main tasks in converting existing Fortran 77 programs into new HPF programs:

Create data distribution directives. This is the most critical task for performance on systems
with distributed memory.
http://www.psrv.com/77toHPF/distrib.html

Expose parallelism. To get execution on multiple processors, most HPF compilers require
explicit parallelism in the form of array syntax or FORALLs; a few can automatically
parallelize DO loops.
http://www.psrv.com/77toHPF/arraysx.html

http://www.psrv.com/77toHPF/forall.html

Clean up old code.

4

11/16/99 13

By contrast: the Math*P approach

Use a comfortable language level: minimal change to Matlab;
Make the parallelism invisible to the user.

A=ones(1000*p,1000) //create a matrix of 1’s
B=ones(1000,1000*p)
1000*p indicates that A is distributed on (up to 1000)
processors in parallel by rows, and B by columns.
really we get parallel sparse (or here, dense) matrices, and all

the built-in subroutines of Matlab (in Math*P) know about how
to deal with these objects (really implemented on MPI)
(work by A. Edelman, {MIT, UCB}, Parry Husbands {LBL})

11/16/99 14

Parallel lisp: the blossoming; the
withering

• Early 1980s, a raft of computer companies started up
with parallel shared-memory processing capabilities

•Ridge-32, Encore, Perkin Elmer, Sequent, LMs …
•Ripe for parallel language and OS ideas

• Some academic efforts as well (e.g. Concert/MIT
made of MC68000s, Bath Univ.)
•All died (pretty much) by 1990

11/16/99 15

Queue-Based multiprocessing Lisp
(Gabriel, McCarthy, 1985)

• Shared memory architecture assumed (Consistent
with Lisp pointers)
• Possible to limit degree of multiprocessing at runtime
• Minor damage to language
• Ordinary Lisp should take on new meanings in
parallel contexts rather
• Everything should work with only one processor as
well.

11/16/99 16

QLet

(qlet pred ((x1 arg1) … (xn argn))
statement1
statement2 ….)

Where pred is evaluated first to nil or eager or
something else. Nil Å qlet is like let :
(let ((x1 arg1) …(xn argn))

statement1
statement2 ….)

5

11/16/99 17

Qlet -2

If pred evaluates to non-Nil, some multiprocessing
happens: (non-eager…)
Start processes for evaluation of each argi going.
When all the results are known, start statement1 etc.

If pred=eager
Also start statement1 at the same time. This may lead
to waiting when the “empty” values of xi’s are
encountered.

11/16/99 18

Qlet -3

Pred should most likely do something like this:
if we have more processors available than processes
and there are some non-trivial computations

Then do them in parallel…

(defun qfib(n depth)
(if (<= n 1) 1

(qlet (> depth 0) ;; no parallel if false
((n1 (qfib (- n 1) (- depth 1)))
(n2 (qfib (- n 2) (- depth 1))))
(+ n1 n2))))

11/16/99 19

QCatch

Recall (catch tag form) receives a non-local exit
resulting from the execution in form of the expression
(throw tag)

In a multiprocessing context, if form is a qlet, then a
throw from any parallel process halts them all.

Qcatch differs from catch in that if a value is returned
from form, it still waits for all sub-process spawned to
finish.

11/16/99 20

Unwind-protect

Recall (unwind-protectform cleanup) regardless of
what happens in form , the cleanup code is executed.
Extended for parallel processing, requiring that the
cleanup code be un-killable.

6

11/16/99 21

Shared or Shredded?

Synchronization requires locks, exclusion; it is
demonstrated how this can be done with catch and
throw;
Can a process kill another? No, but with proper setup,
a process can be forced to “commit suicide”.

11/16/99 22

Why not just “pcall”

(pcall f arg1 arg2 ….) would evaluate all of f’s args in
parallel. Rejected on the basis that collecting
arguments is too complex in Common Lisp. How
many args do you “wait” for?
[Somewhat solved by not using Common Lisp]

11/16/99 23

Multilisp (Halstead)

(pcall f arg1 arg2 ….) not only evaluates all of f’s
args in parallel, but f as well. The value is returned
only after all processing of args is complete.
The idea is implemented through a primitive future
construct.

(future form) immediately returns, but starts up a
process to compute form. An attempt to use the future
prematurely forces a wait.

11/16/99 24

Multilisp primitives

(future ..) creates a new task for its parent in LIFO
order (like UNIX fork or vfork)
(delay ..) creates a new task but does not enqueue it for
execution.

Delay is used for lazy evaluation, call when needed.

7

11/16/99 25

Multilisp primitives

Locks available via atomic operations: replace, and
replace-if-eq which can be applied to any lisp pair.

(replace L V) reads location L and replaces it with V.
(replace-if-eq L V X) requires that the value in L be X.
… replace is theoretically sufficient, though clumsy.

An interesting observation:
“for many programs… increasing the number of
simultaneously active tasks per processor has no effect
on speedup, but quickly increases the amount of free
storage required.”

11/16/99 26

Multilisp implementation issues

The number of stacks grows (one per process); if the
memory model is not sparse, then stack overflow
becomes an issue
Tag checking: any object could be a future. Claim is
that declarations are largely defeated (but… See O.
Shivers Control Flow Analysis in Scheme)

Multilisp was implemented on Concert, a multi-
processor SINGLE USER machine dedicated to
multilisp

11/16/99 27

(Commentary from a MACH-head
in Topics in Adv Lang Imp: “Futures” by

Alessandro Forin)

He is optimistic about experience of parallel lisp (Mul-
T based on Yale’s T scheme and Multilisp)

“The new incoming wave of non-uniform memory
multiprocessors should also do well with parallel
Lisps, as indicated by the experiences with Multilisp.”

11/16/99 28

What exists in commercial lisp today?

Multiprocessing needed for interaction with user
interface models (graphics API), emacs, socket
management in web interfaces, etc.

Examples, Harlequin/Lucid, or Allegro CL similar

8

11/16/99 29

Lightweight process threads in ACL

modeled after MIT lisp machine design..

Lisp internally maintains a scheduler; a structure
describes each eligible process (stack-group); lisp
looks at its run-reason list; checks its arrest-reason list;
a process that needs to wait for some condition
specifies it in a process-wait function.
Stack-groups are private, but shared global vars (etc)
are possible. There are process-lock mechanisms as
well as “without-scheduling” and “without-interrupts”
to protect short pieces of mutator code.

11/16/99 30

CM-2

•Many processors (100 to 100,000) with possible
simulation of even more virtual processors
•Small local memory (8kbytes on CM-2)
•Single instruction multiple data SIMD execution
•General purpose router connects processors
• TMC defunct, but data mining operations now part of
Oracle…

11/16/99 31

CM-2 “*Lisp” big ideas

• Inspired by Backus’ FP and Iverson’s APL
• Uses Common Lisp as base language
• Perhaps requiring lazy data structures (depending on
how difficult bits are resolved in semantics)
• Data driven parallelism rather than control structure
parallelism

11/16/99 32

CM-2 “*Lisp” data structures

•Fine-grained data-oriented parallelism
•Data structure called a xapping (pronounced zapping)

•Unordered collection of ordered pairs
•Maps indexÅvalue
•Example: {rentÅ1800 foodÅ 535 pgeÅ100}
•Infinite xapping {Å5}
•Combined {boyÅblue girlÅpink Ågreen}

•Operations on the entries may be performed in
parallel as though each element were contained in its
own processor, e.g. for search
•Index can be any Lisp object

9

11/16/99 33

CM-2 Lisp (*Lisp)

(xref ‘{skyÅblue appleÅred} ‘apple) Í red

If index= value, just one item is necessary. E.g.

(funcall ‘{Å+} ‘{10 20 30 }‘{ Å3}) Í{13 23 33}

This xapping is called a xet (pronounced zet)

11/16/99 34

More *Lisp notation

If a finite xapping has a set of indices 0 1 2 …
Then we can abbreviate {0 Åa 1Åb ….} as
[a b …] note: [] not {}
This is called a xector (rhymes with vector)
A Lazy xapping {• sqrt} maps every number to its sqrt.
A constant xapping {Å 3} always has value 3
A universal xapping {Å} is the xet of all objects.

11/16/99 35

More *Lisp notation

The apply-to-all operator (inspired by Backus’s FP) is
α.
(αf ‘[1 2 3]) Í [(f 1) (f 2) (f 3)]. Think of αf as
producing a “zillion” f’s …

AN EXAMPLE
(αcons ‘{aÅ1 bÅ2 cÅ3 dÅ4 fÅ5} ‘{bÅ6 dÅ7
eÅ8 fÅ9}) Í {bÅ(2 . 6) dÅ(4 . 70) fÅ(5 . 9)}

11/16/99 36

What did that mean?

Those calls are executed in parallel and resynchronization
occurs when the result xapping is to be constructed

10

11/16/99 37

α distributes over function calls

Consider (α+ α2 α3) and α(+ 2 3). Both produce {Å5}.

Suppose we wish to compute 32+c*(9/5) over a xapping c.
(α+ (α* c α1.8) α32). Say we wish a list of pairs c and
32+1.8c.
This gets tiresome.
If every expression can be prefaced with α we can move it out
front. But if some cannot, like c, we have to make an
exception. Similar to the backquote and comma in ordinary
lisp, *lisp does this:
α(list •c (+ (* •c 1.8) 32)).

11/16/99 38

More consequences

α •c is c
The expression given can be understood as specifying
a computation with a single thread of control operating
on arrays of data. The α signals things to be done in
parallel with the • prefacing data values that differ
from process to process.

(funcall ‘{Å+} ‘{10 20 30 }‘{ Å3}) Í{13 23 33}

(α+ •‘[10 20 30] 3] Å [13 23 33]

11/16/99 39

More *Lisp notation

The symbol β is used to indicate permutation and
reduction. That is, (βf x) takes a binary function f and
a xapping x and returns(f (f ..(f ..))).

[written as f/x in FP and APL]

(β+ foo) adds all the elements; (βmax foo) is max

These reductions can be done in any order, so it had
better be associative.

(β(lambda(x y) y) foo) returns some element, possibly
random.

11/16/99 40

Oops More *Lisp notation

The symbol β is not doing “beta reduction” in the
lambda calculus. TMC people were apparently
running through the Greek alphabet.

11

11/16/99 41

More *Lisp

Other functions

(domain ‘{sky Åblue grass Ågreen}) Í {sky grass}

(enumerate ‘{sky Åblue grass Ågreen} Í{sky Å0
grass Å1} or maybe {sky Å1 grass Å0}

Xunion and various related composition functions are useful

11/16/99 42

Natural representation of 2-D sparse
matrix

{0Å{4Å14} 1Å{1Å67 3Å23} …..}

Row 0 is 0 0 0 0 14

Row 1 is 0 67 0 23 0

Etc (abnormal in that it numbers rows/cols starting at 0,0..)

11/16/99 43

Important operation: parallel f-prefix or
scan

Run the operation f over all prefixes of a vector x. (In APL
f\x)

(scan #’+ [1 2 3 4 7 2]) Í [1 3 6 10 17 19]

This can be implemented so as to execute in time logarithmic
in the number of beta permutation operations{0Å{4Å14}
1Å{1Å67 3Å23} …..}

11/16/99 44

How to define the semantics?

With a meta circular evaluator, of course.

12

11/16/99 45

Tricky parts

It appears that if one does certain computations as
specified

1. Infinite xappings are required (infinite= over all
lisp objects) even when results are very finite.

2. Procedures with side-effects / order dependent can
have various semantics

11/16/99 46

What has evolved from this?

Probably the most prominent remaining research
activitly in this area is the NESL activity at CMU

http://www.cs.cmu.edu/~scandal/nesl.html

(This is an ML-like syntax language, freely distributed
but running on top of … Common Lisp in a Unix-
like operating system. For the full NESL release
you will also need a C compiler, lex, yacc, and if
you want the graphics routines, an X11 library.)

11/16/99 47

NESL tutorial…

http://www.cs.cmu.edu/~scandal/nesl/tutorial2.html

And neat graphics demos, written in (?) NESL or
Java?

11/16/99 48

SIAM News Nov. 1999

13

11/16/99 49

SIAM News Nov. 1999

11/16/99 50

SIAM News Nov. 1999

11/16/99 51

SIAM News Nov. 1999

