
CS 264/Fall 1999

Richard Fateman 1

10/13/99 1

CS 264 Implementation of Programming
Languages
//11: Object Oriented Programming Languages
(continued)

Richard Fateman
Computer Science Division
Fall, 1999

University of California at Berkeley

10/13/99 2

Readings:

• Visit home page: links to Boehm & Weiser paper on conservative
GC

• Dean-Chamber-Gore.[pdf,ps] on specialization in OO languages

• Debugging: Copperman.pdf, tice.pdf

10/13/99 3

Note on Mathematica

h[x_]:= aha /; x>lim ;
lim= 100;
g=h[90]Í h[90]
lim=50;
g-h[90]Í h[90]-aha

So h can be subtlely changed and Mathematica
will not notice that it has to be re-
evaluated. Bug or feature? It certainly
doesn’t correspond to specification.

10/13/99 4

OO as Generic Functions / where we left off
arguing last time..

• Specialize the function F according to the types
(or possibly other attributes) of all objects it is
handled… like Call F x-type,y-type,z-type(X,Y,Z).

• The message passing model is strictly a subset
of this, providing specialization on only the first
argument. (If you were thinking that Fx is part of
X, this may not correspond to your world view. Is
it still OO?)

CS 264/Fall 1999

Richard Fateman 2

10/13/99 5

OO: Inheritance:

• Single Inheritance
– Fairly obvious semantics;

• Multiple Inheritance
– Need an order of reference of methods,

(precedence list)? Super/next methods.

• Other method combinations
– Before/After/Around

10/13/99 6

Is it “efficient enough”?

– Efficiency is probably the wrong question:
• Is it just sufficiently flexible for everything you

want to do with it?
• Is it about as efficient as you can manage, all

things considered?

• If speed is primary consideration, why not use
assembler?

10/13/99 7

Is it “efficient enough”?

– Consider the use of nearly any new feature
• C++ virtual classes
• Template library
• Inheritance

– Nevertheless: big issue is to make OO-methods
as fast as call or even in-line code

10/13/99 8

How flexible?

– What if you compile a program before you define a
class?

– What if you redefine a class?
– What if you redefine a class or its superclass after

you make some instances?

CS 264/Fall 1999

Richard Fateman 3

10/13/99 9

How flexible?

– Dynamic redefinition works in CLOS
• In Lisp, types not associated with names

officially, though (f (the single-float x))
and other declarations are possible.

– What are the costs/benefits of refusing to be so
“dynamic”?
• Re-link invocation to method on first call after

class has changed? (indirect link: “uuo”?)
– Must a method invocation be as fast as a function

call? Change the inheritance?

10/13/99 10

Simple comparisons

10/13/99 11

Sample development / P. Graham chpt 17

• Minimal message-based system
• Multiple inheritance

10/13/99 12

Associating properties with an object,
inheriting as necessary.

use hash tables.
Make every object out of a hash table.

(gethash ‘color object) Å its color
(gethash ‘parent object) Å its parent (or list… of

parent)
Actually, (gethash entry table default) returns 2

values: the value if found else default (or nil), and
2nd value: t if it was found in the table.

CS 264/Fall 1999

Richard Fateman 4

10/13/99 13

Associating properties with an object, simply

(setf point (make-hash-table))
(setf (gethash ‘x-coord point) 10)
(setf (gethash ‘y-coord point) 20)
(setf (gethash ‘move point)

#’(lambda(dx dy)
(incf (gethash ‘x-coord point)dx)
(incf (gethash ‘y-coord point)dy))

)

;; we would like to say move point by 3 4 via
(tell point ‘move 3 4)

10/13/99 14

Here’s the definition of tell

(defun tell (obj message &rest args)
(apply (gethash message obj) args))

10/13/99 15

Should every object (e.g. point) have methods?

Conventionally: no. Classes should have methods.
The “move” method should be part of the point
“class”.
In Self, the design removes classes, use cloning of
prototypes. Simplifies the language. Read about it.

10/13/99 16

Associating properties with an object,
inheriting as necessary.

(defun rget (prop obj)
(multiple-value-bind (val in)(gethash prop obj)
(if in ;we found it
(values val in) ;return the 2 results
;; otherwise see if there is a parent

(let ((par (gethash :parent obj)))
(and par (rget prop par))))))

CS 264/Fall 1999

Richard Fateman 5

10/13/99 17

Associating properties with an object,
inheriting as necessary.

;; old tell

(defun tell (obj message &rest args)
(apply (gethash message obj) args))

;; new tell
(defun tell (obj message &rest args)
(apply (rget message obj) args))

10/13/99 18

Defining classes, instances, and methods

(defun tell (obj message &rest args)
(apply (gethash message obj) obj args))

(setf circle-class (make-hash-table))
(setf our-circle (make-hash-table))
(setf (gethash :parent our-circle) circle-class)
(setf (gethash ’radius our-circle) 2)
(setf (gethash ’area ’circle-class)

#'(lambda(x)(* pi (expt (rget ‘radius
x) 2))))); pi*r^2

; :parent could be ‘parent…, x could be “self”

10/13/99 19

Need to look closely…

(setf (gethash ’area ’circle-class)
#'(lambda(x)(* pi (expt (rget ‘radius x) 2)))));;

What is x? x could be “self”

10/13/99 20

What have we done?

8 lines of code makes Lisp look object-oriented.
Some syntactic sugar can make definitions of
methods, superclasses and slots simpler.

What’s the trick? It seems that Lisp was already
kind of object-oriented or perhaps something more
general, where object-orientation could be brought
to the surface by viewing it in the right light.

CS 264/Fall 1999

Richard Fateman 6

10/13/99 21

Multiple Inheritance

Multiple paths to a superclass

a

d

b c

10/13/99 22

Multiple Inheritance: build up a precedence
list

(defun rget (prop obj)
(dolist (c (precedence obj))
(multiple-value-bind (val in)(gethash prop c)
(if in (return (values val in))))))

(defun precedence (obj)
(labels ((traverse (x)

(cons x (mapcan #’traverse (gethash
:parents x)))));now a list of parents

(delete-duplicates (traverse obj))))

10/13/99 23

Example

(setf scoundrel (make-hash-table)
patriot (make-hash-table)
patriotic-scoundrel (make-hash-table)
(gethash ’serves scoundrel) ’self
(gethash ’serves patriot) ’country
(gethash :parents patriotic-scoundrel)

(list scoundrel patriot))

(rget ‘serves patriotic-scoundrel) Å SELF

10/13/99 24

How to improve?

1. Redo syntax

2. Functions to create objects

3. Functions to create methods (note references to self
and to components)

4. Create precedence lists WHEN AN OBJECT IS
DEFINED instead of WHEN WE SEARCH FOR A
METHOD

5. (Consequence of 4.) When something’s parents are
modified, remake the precedence list of every object
affected

6. Allow for “call next method” or other combinations

CS 264/Fall 1999

Richard Fateman 7

10/13/99 25

Syntax

The TELL syntax is clumsy if you nest it. Assume that
(tell obj1 message1) returns an object… to use it..

(tell (tell obj1 message1) message2)

obj1:message1:message2 might work, but in lisp, why
not use functional syntax?

(message1 (message2 obj)) ?

10/13/99 26

Functions to create (and keep track of) objects

Keep a global list of objects, and when defining a new
object (with make-hash-table), also collect some
other information, like a list of parents.

e.g.

(setf patriotic-scoundrel (newobj scoundrel patriot))

10/13/99 27

Functions to create methods

Once a name is defined as a method (like area) we can
redefine what it means to use it like this:

(defprop area t)
(setf (area circle-class)

#’(lambda (c)(* pi (expt (radius c) 2))))

Note we had to make (radius c) work instead of

(rget ‘radius c)

10/13/99 28

Distinguishing Instances from Classes

Once an object is defined we can make instances as
special objects that inherit from just one object,
which we can now refer to as a class: the instances
don’t have precedence lists, and need not be kept
track of in the list of objects…In fact, all an instance
is, is an object with 1 parent.

CS 264/Fall 1999

Richard Fateman 8

10/13/99 29

Hash tables are slow.

IF WE AGREE TO LIMIT OURSELVES TO FIX ALL
PROPERTIES WHEN A CLASS IS DEFINED…

We can set up a vector of the properties: the local
variables and methods, and parents. In particular,
classes will contain all the information about
precedence, location of methods, parents, IN FIXED
LOCATIONS.

It is advantageous to separate classes and instances now,
because making an instance is like copying most of a
class, and there is no need to recompute vectors.

10/13/99 30

When does speed matter?

SOME OPERATIONS CAN BE SLOW:

Creating new classes and changing the class hierarchy:
This will not be done frequently, so it is the preferred
time to do as much preparation as possible: compute
precedence lists for inheritance; maybe even
compute specialized methods

10/13/99 31

When does speed matter?

MUST BE FAST

Creating new instances (A vector copy? Allocated from
a pool of pre-allocated stuff or heap?)

Accessing a method: if the first cell in an instance vector
points to a parent (class) vector, and the named
vector is the 5th method in the precedence list, and
this is known at compile time [we can hope], then an
OO version of a function call is like 1 extra memory
reference. [specialization, simple case]

Accessing an instance variable: Same as usual variable;
can be optimized for registers etc. Class variable 1
extra memory reference

10/13/99 32

How much code is needed?
Graham’s OO code now is up from 8 lines to 89 lines.

Part of the small size depends on compact Lisp
facilities.

It’s much smaller than the elephantine CLOS, but not as
general or (in some ways) as specific as CLOS.

The tension is between

Being clever so that programs run fast when they are not
using available generality (and run only as slowly as
needed when they use that generality)

vs

Leaving out the generality so that everything runs fast.

CS 264/Fall 1999

Richard Fateman 9

10/13/99 33

How much code is needed? See lisp/grahamobj.lisp

;; Paul Graham’s object oriented system from chapter 17 of ANSI
CL

;;
(defmacro parents (v) ‘(svref ,v 0))
(defmacro layout (v) ‘(the simple-vector (svref ,v 1)))
(defmacro preclist (v) ‘(svref ,v 2))

(defmacro class (&optional parents &rest props)
‘(class-fn (list ,@parents) ’,props))

(defun class-fn (parents props)
(let* ((all (union (inherit-props parents) props))

(obj (make-array (+ (length all) 3)
:initial-element :nil)))

(setf (parents obj) parents
(layout obj) (coerce all ’simple-vector)
(preclist obj) (precedence obj))

obj))

(defun inherit-props (classes)
(delete-duplicates

(mapcan #’(lambda (c)
(nconc (coerce (layout c) ’list)

(inherit-props (parents c))))
classes))) 10/13/99 34

How much code is needed? 2nd page
(defun precedence (obj)

(labels ((traverse (x)
(cons x

(mapcan #’traverse (parents x)))))
(delete-duplicates (traverse obj))))

(defun inst (parent)
(let ((obj (copy-seq parent)))

(setf (parents obj) parent
(preclist obj) nil)

(fill obj :nil :start 3)
obj))

(defun rget (prop obj next?)
(let ((prec (preclist obj)))

(if prec
(dolist (c (if next? (cdr prec) prec) :nil)

(let ((val (lookup prop c)))
(unless (eq val :nil) (return val))))

(let ((val (lookup prop obj)))
(if (eq val :nil)

(rget prop (parents obj) nil)
val)))))

10/13/99 35

How much code is needed? 3rd page

(defun lookup (prop obj)
(let ((off (position prop (layout obj) :test #’eq)))

(if off (svref obj (+ off 3)) :nil)))

(defun (setf lookup) (val prop obj)
(let ((off (position prop (layout obj) :test #’eq)))

(if off
(setf (svref obj (+ off 3)) val)
(error "Can’t set ~A of ~A." val obj))))

(defmacro defprop (name &optional meth?)
‘(progn

(defun ,name (obj &rest args)
,(if meth?

‘(run-methods obj ’,name args)
‘(rget ’,name obj nil)))

(defun (setf ,name) (val obj)
(setf (lookup ’,name obj) val))))

10/13/99 36

And that’s all.

(defun run-methods (obj name args)
(let ((meth (rget name obj nil)))

(if (not (eq meth :nil))
(apply meth obj args)
(error "No ~A method for ~A." name obj))))

(defmacro defmeth (name obj parms &rest body)
(let ((gobj (gensym)))

‘(let ((,gobj ,obj))
(defprop ,name t)
(setf (lookup ’,name ,gobj)

(labels ((next () (rget ,gobj ’,name t)))
#’(lambda ,parms ,@body))))))

CS 264/Fall 1999

Richard Fateman 10

10/13/99 37

Meta Object Protocol

• Part of CL standard
• The Art of the Meta Object Protocol

G.Kiczales, J. des Rivieres, D. Bobrow.
(MIT Press) 1991

• Stated Objectives:
– Robust (working programs continue to work)
– Abstracted (implementation hidden)
– Ease of use
– Efficiency

10/13/99 38

Other readings..

• Identifying Profitable Specializations in
Object-Oriented Languages (Jeffrey Dean,
Craig Chambers, David Grove)

10/13/99 39

Specialization...

10/13/99 40

Specialization...

