
CS 264/Fall 1999

Richard Fateman 1

9/21/99 1

CS 264 Implementation of Programming
Languages
//6: Continuation Passing Style

Richard Fateman
Computer Science Division
Fall, 1999

University of California at Berkeley

9/21/99 2

Discussions of Continuation Passing Style
Lisp and Scheme fans:
Essentials of Programming Languages, Chapter 8 and following
By Friedman, Wand, Haynes
(also see ftp://ftp.cs.indiana.edu/pub/eopl/)
Lambda, the Ultimate Declarative
By Steele (Esp. appendix A); (copy in papers directory: lambda.txt
{OCR’d} lambda-379.pdf) also Rabbit, a compiler for Scheme (copy
in papers directory: rabbit.txt {OCR’d} rabbit-474short.pdf)

ML fans (a big first step…) A gentle on-line intro to ML with some
comments…
http://www.dcs.napier.ac.uk/course-notes/sml/
Or another tutorial introduction:
http://www.cs.cmu.edu:8001/afs/cs/user/rwh/public/ml-notes.ps

Continuation-Passing, Closure-Passing Style, by Appel and Jim;
better explanation: Alex Aiken’s notes from 1995
(copy in papers directory)

9/21/99 3

Why CPS at all?
•Elucidates the concept of function call as a generalization of GOTO.
• Call/return as “expensive operations” in programming languages
can be alleviated by proper compilation, sometimes via CPS
transformations
•Lambda is an environment operator which attaches new names to
values
•There is a symmetry between forms and functions: (see Steele’s
Lambda: the Ultimate Declarative).

9/21/99 4

Why CPS : symmetry; compiling

Forms (Function Invocations) Functions (LAMBDA Expressions)
Evaluation Application (function invocation)
Push control stack before Push environment stack before

invoking functions which evaluating form which
produce argument values produces result value

Forms determine sequencing LAMBDA expressions determine
in time extent in space (scope)

Implicit continuation is Implicit temporary is created
created when evaluation of when return of a function
a form requires invocation requires further processing
of a function of a form

CS 264/Fall 1999

Richard Fateman 2

9/21/99 5

Regular Return/Value Passing Style
Consider computing the Lisp expression
(print (- (̂b 2)(* 4 a c))

What computation happens first? A bunch of functions get identified
by their position in an s-expression, but really we start with…
Get b's value from environment. Compute (̂b 2) and leave the result
“somewhere”. Next compute (* 4 a c) etc.
Ultimately deliver stuff (return it) to print, which prints it, and in turn
gives up control to the read-eval-print loop.

9/21/99 6

Continuation Passing Style Idea

Consider instead each function has an alternative version with an
explicit continuation k as its last argument. That is, (^^ b 2 k)

computes ans=b^2 but then "calls" (k ans). This is not really a call
since as it happens it will not return, but we'll use the lambda
notation anyway. (the “stutter” function denotes CPS style)

We can look at the sequence of computations now as

(^^ b 2 k2)
where k2 = (lambda(r1)(** 4 a c k3))

where k3 = (lambda(r2)(- r1 r2 k))
; k is the inherited continuation

i.e.
(^^ b 2 (lambda(r1)(** 4 a c (lambda(r2)

(-- r1 r2 #’print)))))

Thus lambda is renaming plus goto..

9/21/99 7

Continuation Passing Style Primitives

Actually, we won’t mess with “simple” functions… we’ll leave + * -
etc alone. Assuming they are primitives and don’t call any other
functions (especially user functions) there’s no payoff in a CPS
conversion. (If we were compiling (+ x y) we would try to make it
into one or two machine instructions, and would hardly have an
interest in converting a call to binding stuff + goto!)

9/21/99 8

Continuation Passing Style by Hand:1

(define (remove s los) ; remove all occurrences of s from
;list of symbols los

(if (null? los) ’()
(if (eq? s (car los))(remove s (cdr los))

(cons (car los) (remove s (cdr los))))))

add k parameter

(define (removeX s los k)
(k (if (null? los) ’()

(if (eq? s (car los))
(remove s (cdr los))

(cons (car los) (remove s (cdr los)))))))

CS 264/Fall 1999

Richard Fateman 3

9/21/99 9

Continuation Passing Style by Hand:2

treat conditional

(define (removeX s los k)
(if (null? los) (k ’()) ;k is in tail form. done.
(k (if (eq? s (car los))

(remove s (cdr los))
(cons (car los) (remove s (cdr los)))))))

treat next conditional

(define (removeX s los k)
(if (null? los) (k ’())

(if (eq? s (car los))
(k (remove s (cdr los)))

(k (cons (car los) (remove s (cdr los)))))))

9/21/99 10

Continuation Passing Style by Hand:3

(define (removeX s los k)
(if (null? los) (k ’())

(if (eq? s (car los))
(removeX s (cdr los) k) ;; all args are simple

(k (cons (car los) (remove s (cdr los)))))))

;; still need to do the last clause...

(define (removeX s los k)
(if (null? los) (k ’())

(if (eq? s (car los))
(removeX s (cdr los) k)

(removeX s (cdr los)(lambda (z)(k (cons (car los)
z)))))))

9/21/99 11

Continuation Passing Style by Hand:4
So what is the point here? we can now view this program as having
purely iterative control (strictly bounded stack growth.)
Compare this (original remove procedure)

> (remove ’x ’(a b c x d x))
"CALLED" remove x (a b c x d x)
"CALLED" remove x (b c x d x)
"CALLED" remove x (c x d x)
"CALLED" remove x (x d x)
"CALLED" remove x (d x)
"CALLED" remove x (x)
"CALLED" remove x ()
"RETURNED" remove ()

"RETURNED" remove ()
"RETURNED" remove (d)

"RETURNED" remove (d)
"RETURNED" remove (c d)

"RETURNED" remove (b c d)
"RETURNED" remove (a b c d)
Å(a b c d)

9/21/99 12

Continuation Passing Style by Hand:5

To this

>(removeX ’x ’(a b c x d x) identity) ;note
"CALLED" removex x (a b c x d x) #[proc]
"CALLED" removex x (b c x d x) #[proc]
"CALLED" removex x (c x d x) #[proc]
"CALLED" removex x (x d x) #[proc]
"CALLED" removex x (d x) #[proc]
"CALLED" removex x (x) #[proc]
"CALLED" removex x () #[proc]
"RETURNED" removex (a b c d)

"RETURNED" removex (a b c d)
"RETURNED" removex (a b c d)

"RETURNED" removex (a b c d)
"RETURNED" removex (a b c d)

"RETURNED" removex (a b c d)
"RETURNED" removex (a b c d)
Å(a b c d)

CS 264/Fall 1999

Richard Fateman 4

9/21/99 13

Catch/Throw, on the Path to Call/CC

Norvig Chapter 22 (you’ve seen it.) Now we discuss it..

Error, errset (old lisp): goto in a dynamic extent context
modernized to Catch, Throw (so you can name the error), and then
generalized to conditions, handlers, and substantial elaboration in
ANSI CL. (Possible student project: compare exception systems)

(defun print-table (L)
(catch ’not-a-number (mapcar #’print-sqrt-abs L)))

(defun print-sqrt-abs (x)
(print (sqrt (abs (must-be-number x)))))

(defun must-be-number(x)(if (numberp x) x
(throw ’not-a-number "huh")))

(print-table ‘(1 4 –9 x 100))
… 1 2 3 ;printed by print function

"huh" ;returned from print-table

Note bypassing of all intermediate programs

9/21/99 14

Generalizations of Catch

What if we could return to the catch, enough information Q so that
we could patch up some information in the environment of Q in
which the throw occurred, and then continue from the throw point?

What if we could package up Q so that we could save it indefinitely
and even continue from the throw several times?

How much is “enough information”? If we are going to apply a
continuation, say (lambda(v) (+ v x) then we need to have access to
all bindings of variables used free (e.g. x). We can construct a
“closure” object that gives us access to just these, rather than naively
preserving the whole environment from the throw. In any case just
saving a stack pointer won’t do the trick.

9/21/99 15

Alternatives to Catch

Some languages, in their nearest equivalent, provide no returned
environment (so any error indicators must be global, the actions tend
to be “print message and abort computation”.)
Some languages provide no equivalent (all error conditions must be
returned via the ordinary return mechanism: typically in Fortran:
Call foo(x,y,errid) // errid is an integer flag that must be checked
If (errid .ne. 0)

What is provided in C, C++, Java, ML, PL/I, Ada ?

9/21/99 16

Call/CC
Scheme has Call with Current Continuation:

(+ 1 (call/cc (lambda(cc)(+ 20 300))))
Å321 ; same as ((lambda(val) (+ 1 val)) (+ 20 300))

(+ 1 (call/cc (lambda(cc)(+ 20 (cc 300)))))
Å301 ; bypassing addition of 20, just returning 300 to +

;like
((lambda (val)(+ 1 val))

(catch ‘cc ((lambda(v)(+ 20 v))
(throw ‘cc 300))))

;; a remarkable thing:

(+ 1 (call/cc (lambda (cc)(set! old-cc cc)
(+ 20 (cc 300)))))

Å301

Å(old-cc 500)
Å501

CS 264/Fall 1999

Richard Fateman 5

9/21/99 17

Call/CC vs Catch

Compare Scheme’s
(+ 1 (call/cc (lambda (cc)(set! old-cc cc)

(+ 20 (cc 300)))))
Å301

Å(old-cc 500)
Å501

To rewriting with “catch”
(+ 1 (catch ‘tag (+ 20 (throw ‘tag 300))))
Å 301

(throw ‘tag 500)
Åerror, no catch for the tag TAG

Call/cc’s continuations have INDEFINITE EXTENT

9/21/99 18

Uses of Call/CC:1
Non-deterministic execution:
(define (random-choice f g)

(if (= 1 (random 2))
(choose-first f g)

(choose-first g f)))

(define (choose-first f g)
(call/cc
(lamda (k)

(push ((lambda()(k (g)))) backtrack-points
))))))

(define backtrack-points (cons (lambda()(display "failed
past last backtrack point"))

’()))

(define (fail)
((pop backtrack-points))) ;run the last continuation

9/21/99 19

Uses of Call/CC:2
(define (integer)
(random-choice (lambda()1) (lambda()

(+ 1 (integer)))))

(define (prime) ; random prime
(let ((n (integer)))

(if (prime? n) n (fail))))

;; more plausible “real” uses: logic programming,
(including non-chronological backtracking), error
recovery.

Dirty little secret:
Scheme implementations sometimes leave out Call/CC

9/21/99 20

An interpreter supporting Call/CC

It would be trivial to write a Common Lisp interpreter for Scheme if CL also
supported Call/CC, just as it IS trivial to do storage management in an interpreter if
the host language has storage management…

Even so, it is not too hard: we do have to build continuations with indefinite extent.

Recall:

(defun scheme () ;;OLD MAIN LOOP
"A Scheme read-eval-print loop (using interp)"
(init-scheme-interp)
(loop (format t "~&==> ")

(print (interp (read) nil))))

CS 264/Fall 1999

Richard Fateman 6

9/21/99 21

An interpreter supporting Call/CC:R-E-P

(defun scheme () ;; NEW MAIN LOOP
"A Scheme read-eval-print loop (using interp).
Handles call/cc by explicitly passing continuations."
(init-scheme-interp)
(loop (format t "~&==> ")

(interp (read) nil #’print)))

9/21/99 22

An interpreter supporting Call/CC:interp
(defun interp (x env cc) ;; we leave out some pieces.
"Evaluate the expression x in the environment env,
and pass the result to the continuation cc."
(cond

((symbolp x) (funcall cc (get-var x env)))
((atom x) (funcall cc x))
((case (first x)

(QUOTE (funcall cc (second x)))
(BEGIN (interp-begin (rest x) env cc))
(SET! (interp (third x) env

#’(lambda (val)
(funcall cc (set-var! (second x)

val env)))))
(IF (interp (second x) env

#’(lambda (pred)
(interp (if pred (third x) (fourth

x))
env cc))))

(LAMBDA ;; kinda messy… see the notes..
(t (interp-call x env cc))))))

9/21/99 23

An interpreter supporting Call/CC: call/cc

;;The hook here is that call/cc becomes a regular lisp
function

(defun call/cc (cc computation) ;explain cc as 1 st arg.
"Make the continuation accessible to a Scheme procedure."
(funcall computation cc

;; Package up CC into a Scheme function:
#'(lambda (cont val)

(declare (ignore cont))
(funcall cc val))))

9/21/99 24

Other variants (some in SICP)

Analyzing interpreter
Ambiguous / non-deterministic interpreter
Lazy evaluation, call by need (infinite streams)
Normal order
Different parameter binding rules (name, ref, var, value/return)
Lexical vs Dynamic access to free symbols.

CS 264/Fall 1999

Richard Fateman 7

9/21/99 25

Analyzing

Replace (perhaps in place/ destructively) all expressions that can be
partly analyzed, partly executed, in a first pass. E.g. type-checking,
argument counting, macro-expansion. Then execute this in a second
pass.

Usually but not always faster. (why?)

9/21/99 26

Lazy

Only evaluate when necessary. In particular, keep all values as “thunks”
unless needed for (a) primitive evaluation, (b) side-effects like printing,
(c) decision-making

Should CONS evaluate its arguments?

Should all functions be memoized? (Call by need: evaluate an
expression the first time it is needed, but remember it thereafter.)
(Call by name from Algol 60: evaluate an expression each time it is
needed).

How hard is it to be lazy?

9/21/99 27

Non-deterministic “Amb”

Misnomer “non-deterministic”: merely a kind of tentative execution
providing the ability to do backtracking via “fail”.
SICP version … probably PROLOG confounds the issue .

9/21/99 28

Normal order

Fully Expand and then Reduce; implausible with assignments. If Fully
Expanded when needed, this is like lazy eval.

CS 264/Fall 1999

Richard Fateman 8

9/21/99 29

Parameter Binding

Different parameter binding rules (name, ref, var, value/return)
(minor industry in making up questions in which programs return
different answers under different disciplines.

9/21/99 30

Lexical vs Dynamic Scope

Should control and variable access follow the same links? (If you believe
this then you want Dynamic Scope.)

Should variable access follow the static declarative structure of a
program as in Pascal, Scheme? (Then you want lexical or static scope.)

Implementation issues have been clouded by misunderstandings, some of
which have involved phrases “upward funarg”, “spaghetti stack”,
shallow and deep binding.

