
1

8/26/99 1

CS 264 Implementation of Programming
Languages
// 1: Introduction

Richard Fateman
Computer Science Division
Fall, 1999

University of California at Berkeley�

This course is one of three graduate courses that follow the

undergraduate CS164 (Programming Languages and Compilers).

CS263 concentrates on language design, semantics, and related

issues. CS264 is on advanced language implementation. The third

course, CS265, covers more topics in implementation and in particular

concentrates on compiler optimization and code generation. There are

additional topics in parallel languages covered in CS267, although

there the emphasis is using these languages in applications. There is

also some coverage of implementation of languages for artificial

intelligence in CS 283.

2

8/26/99 2

Tentative Topics

– Review of traditional lex/grammar/tree building

– Interpreters, run-time support

• Storage management

• Type management

– CPS source-source transformations

– Object-oriented PLs

– Software/Hardware pipelining, IA-64 VLIW

– parallel, declarative/logic, scripting languages

– Floating-point arithmetic

– Environments, editors, etc.

These are tentative: we have put down some stuff we feel obligated to
put down, some stuff we are particularly interested in, and some
material that we hope is especially topical and of interest to some of
you.

We can add (or subtract) topics.

3

8/26/99 3

The traditional analysis + synthesis model of a compiler

Red Dragon figure 1.9

This figure is taken from Aho/Sethi/Ullman, Compilers: Principles,
Techniques, and Tools.

The idea of multiple passes over a repeatedly-transformed text is a
popular but not necessarily accurate idea of what goes on in a compiler
today. Some of the separations have been based on program
constraints (not enough memory to store the program, and so data
structures had to reside on disk, tape, or even cards).

The ordering of activities after the analysis phases is generally open to
restructuring. In fact some phases may be repeated.

The target language here is presumed to be assembler or binary; the
probability is high that a linker, combined code with libraries will be used.

There is also another opportunity for analysis that can happen after the
code is generated: run-time timing and restructuring, when the dynamic
aspects of a program become apparent.

4

8/26/99 4

position …...

initial …...

rate …...

position := initial + rate * 60

Symbol table

Here we see the sequence of processing for an assignment statement.
Note that for a good part of the processing the influence of the data
structures: symbol table, syntax trees, intermediate forms, is substantial.
There are major “CS theory” successes in these topics.

5

8/26/99 5

Compiler Phases - Analysis

• Scanner (lexical analyzer)
– maps text (sequences of characters) into

sequence of tokens

• Parser
– maps sequence of tokens into parse tree or

phrase structure

• Semantic Analyzer
– associates attributes, semantics with tree

– checks rules, propagates info

Just to review:: the idea is use neat theoretical/practical ideas in
separate phases:

Lexical analysis is done by viewing the task as an automaton (finite
state machine) acting as a recognizer/transducer, on a limited language.
This makes the task of the parser simpler: Better to have the lexer build
a character sequence 1 2 3 into an integer 123, or do the simple-
minded parse B E G I N into a token BEGIN.

The parser was for some period of time (mid-1960’s) a rather central
notion in what constituted Computer Science: the center of
Programming Languages. Successes in theory, considerable effort in
compiler-compilers (just the notion: all we were doing was writing
parsers, not compilers!) Mapping strings into trees according to BNF.

The reality is that semantic analysis is, in practice, far more important
and difficulty. Mapping trees into units that must be checked against
some notion of what the computer language “means” (and whether it is
right) is vital: conveying semantics to a computer is much trickier than
conveying syntax.

6

8/26/99 6

Compiler Phases - Synthesis (many variants)

• Translation to Virtual Machine
– elaboration of representation of data, operations

– storage layout

• Optimization or “Improvement” (Global)
– Program transformations

• Local code optimization, generation
– instruction selection, simplification

– register allocation

– machine or assembly code specific

Here’s where we get into bug-ridden details, inefficiencies, and the big
money for benchmarking.

Attempts to make this systematic go back to the early 70’s: why not
have an equivalent “back end” notion similar to the CFG notion of the
“front end”?

Describe computer architectures by formal structures and map the
programs into the architectures.

Describe optimizations as tree-to-tree transformations.

Find ways of optimizing memory hierarchy (initially just registers and
memory. Now registers, cache, secondary cache, main memory, virtual
paged memory)

etc.

7

8/26/99 7

Important role of compiler technology in CS

– Sophisticated coding: symbol tables/hash tables,
trees, DAGs (directed acyclic graphs), stacks,
environments, fast and efficient algorithms

– Theory of parsing (Chomsky CFG vs Backus BNF)

– Finite state machines/ recognizers

– Theories of semantics

– Practical program specification easier for
“applications” (starting with Fortran {and Lisp})

– Influence on computer hardware

– Vast literature

We’ve mentioned successes of theory: what has this gotten us?
Implementation has become easier (quite routine in some situations) for
parsers, scanners.

We know about language issues like data types. Scope of identifiers.
The technology of memory stacks, heaps, explicit vs. implicit memory
allocation (malloc vs. garbage collection)

High-level language constructs in computer architecture. Sparc. PDP-
10.

Many MS and PhDs pursued.

8

8/26/99 8

Disappointments in Compiler and
Programming Language (PL) Technology

– If PL provide ideal communication form, why are
higher level languages “inefficient”?

– Too many, too complicated PLs

– Parallel languages still a problem

– PL for the masses: Basic? HTML?

– Vast literature: variously shallow, repetitive,
inconclusive, obsolescent, opinionated, abstruse

– Software Engineering…

– Amazon.com search on “programming languages”
yields 3585 hits (5212 on “computer”)

There is a paradox in high-level PLs. If the language expresses perfectly
and purely the computation, without waste or hesitation, without clumsy
circuitous paraphrasing, then why can’t it compile into exactly the most
efficient code for that? Why must one write in assembler? (Is this still
true?)

Why are we still defining new languages, 30 years after Fortran?

Why are we still defining BAD languages?

Why is software so flakey, and software engineering so soft?

Why are there so many books, and why is it that they have titles like
“learn Java in 4 days”? Is this realistic? (Arguably one could learn Java,
but how good a programmer would you be? Depends, doesn’t it?
Compare this to “learn Brain Surgery in 4 days”?)

9

8/26/99 9

Two views emerge in practice

• Batch block-structured imperative model
– multiple compiler passes to conserve storage

– consistency burdens placed on programmer

– debugging offline, post-execution “core dump”

• Functional interactive “environmental”
model
– residential system, incrementally developed

programs,

– structure-based editors

– debugging interspersed with programming

– graphical user interfaces for debugging etc.

Batch: historical “card deck” model, mirrored in successive waves of
mainframe computing.

Residential system: single-user interactive systems (original UNIX!),
time-sharing, workstations, graphical workstations, single-user
interactive systems (MAC, PC/MS-DOS), networked workstations…

The true residential examples to consider typically support one person in
one environment with one language e.g. MIT Lisp machines, CMU
PERQ (argh, extended Pascal), Xerox Alto, D-machines, but
sometimes these are developed in timesharing.. E.g. SDS-940

10

8/26/99 10

Read/Eval/Print Interaction vs Batch

While true do
 print (evaluate (parse (tokenize(readchars()))))

While true do
 print (run-VM (byte-compile (parse (tokenize(readchars())))))

While true do
 print (execute (optimize (compile (parse (tokenize(readchars()))))))

While true do
 print (evaluate (read ())) ;; LISP

While true do
 create-load-module (optimize (compile (parse (tokenize(readchars()))))))

Evolution from lisp to batch

11

8/26/99 11

Interaction vs Batch (II)

• Traditional Fortran storage model
– no stack

– no allocation at runtime

• C
– Malloc, free, enough rope to hang yourself

• Lisp (etc)
– Garbage Collection

– Dynamic types, run-time loading

– Elaborate source-level debugging

There are other issues: principally types and storage management, that
distinguish these approaches. How do you do “linked lists” in Fortran?

(allocate an array in common. Model memory..)

12

8/26/99 12

Can compiler tools be used outside PLs?
How about Mathematics?

– Handwritten input of simple forms?

– Realistic recognition problems are tougher

– (see assignment #1)

We tend to think that PLs today are exemplars of communication of
algorithms and (especially in science) of mathematical computation. Too
bad it isn’t true today.

Computer science is finding itself in a key role in designing encodings
for on-line courses to web sites to typesetting systems, for essentially all
human knowledge. What kinds of encyclopedic encodings are there?

