
CS 264/Fall 1999

Richard Fateman 1

9/29/99 1

CS 264 Implementation of Programming
Languages
//8: Run-time: data representations, types,
pointers, storage allocation

Richard Fateman
Computer Science Division
Fall, 1999

University of California at Berkeley

9/29/99 2

What is a pointer?

• 32 bits (more or less):
– More: large address space systems,

• 2^32 is 4x109

• Are those bytes you are addressing or words or quad words?
– Less: a gigabyte or two still seems workable

• Segmented address spaces of smaller size are unpopular
• Relative pointers can be much smaller (Clarke’s empirical

studies)
• If pointers are addresses of double-word aligned objects, they

have 3 trailing 0’s, so 29 bits may be enough

9/29/99 3

What is a typed pointer?

• Room for a type? (Use those 3 bits? OR)
– Pointer to an INT

• INOB: Oops, not a pointer but an INT RIGHT HERE.. 2^30 is 109

• Pointer to a CONS

• Pointer to something else whose type is apparent somehow otherwise

– BIBOP

• Each object is on a page. Each page has a type

• Limits the size of objects to size(page)-tag

• Computation to extract? Locality?

– Boundaries

• Inflexible if we must allocation more objects of various sorts.

• Computation to extract? Locality

– Explicit tag with object. (OK if object is large enough)

9/29/99 4

Digression: where do you point?

Just because data is aligned on words, doesn’t prevent you
from having pointers to it that are not. E.g. point to the 3 rd

byte and load it via ld r1,-3(r2) etc.

CS 264/Fall 1999

Richard Fateman 2

9/29/99 5

Digression: CDR coding

A statistically “nearly free” pointer
Assume most CDRs in Lisp are pointers to the next cell.
Or maybe a few cells back or forward from here.
Use a tag to say “short pointer”
If necessary, say “we need a long pointer” and store THAT

nearby.
If we can’t hack it in place, leave a forwarding pointer to a

larger place.
(Requires a load indirect instruction where the “indirect” bit is

in the DATA, not the INSTRUCTION. (availability? PDP-10
had it, so did Lisp machines).

9/29/99 6

Sometimes the program knows, sometimes
not
• Arrays of known types: double-floats.
• Contents of floating-point registers.
• What if a value is returned from a function?

– “Boxing” values
– Bad situation: (loop (setf r (f r))..) where r needs to be boxed.

9/29/99 7

Hardware solutions to (+ x y)

• Lisp machine tagged architecture did the add at the same
time as the tags were checked. If the calculation was
erroneous, it is found out in parallel. (What’s a lisp
machine?)

• In some RISC systems almost all tag checking can be
hidden: a "squashed delayed branch" is where instructions
are executed while the branch condition is calculated and
the effect of the instructions is canceled if the branch is not
taken.

• Note that SPARC has add/sub instruction that trap if the
bottom two bits of the operands are not zero, intended to
support tagging for LISP!

9/29/99 8

P.A. Steenkiste:Tags and Run-time Type Checking..

Conclusions: 11 to 24% of a program can be spent in tag checking,
another 8% in tag removal, and 1.5% in tag insertion. About 2/3 of
tag checking can be eliminated by hardware, resulting in a 17%
speedup of Lisp execution on a sample set of 10 programs (heavily
oriented toward lisp list operations).

(in Peter Lee’s Topics in Advanced Language Implementation)

CS 264/Fall 1999

Richard Fateman 3

9/29/99 9

Next: Storage Allocation, Garbage Collection

Paul Hilfinger’s notes on the state of garbage collection,
http://www-inst.EECS.Berkeley.EDU/~cs61b/reader1/storage.pdf

(in CS264 class notes, hilfinger-storage.pdf)

Appel’s paper claiming that stack allocation
is SLOWER than heap allocation, at least under certain
conditions.

gc-faster-than-stack.ps

9/29/99 10

Next: Storage Allocation, Garbage Collection

Major discussion of uniprocessor GC::

ftp://ftp.cs.utexas.edu/pub/garbage/bigsurv.ps
(locally, wilson-bigsurv.ps)

citation for an earlier version of this document, apparently
still being revised:
Wilson, P.R. (Edited by: Bekkers, Y.; Cohen,
J.) Uniprocessor garbage collection techniques. (Memory
Management. International Workshop IWMM 92. Proceedings, St. Malo,
France, 17-19 Sept. 1992.) Berlin, Germany: Springer-Verlag,
1992. p.1-42. xi+524 pp. 74 references.

9/29/99 11

Next: Storage Allocation, Garbage Collection

Paul R. Wilson, Mark S. Johnstone, Michael Neely, David
Boles. 1995-07. Dynamic Storage Allocation: A Survey and Critical
Review. University of Texas at
Austin. <URL:ftp://ftp.cs.utexas.edu/pub/garbage/allocsrv.ps>.

78 pages: storage allocation, more generally including
philosophical as well as historical information.

(If 1 megabyte of RAM is squandered in each of 100 million PCs,
at $1/megabyte that’s $100 million. If 16 meg is squandered, that’s
$1.6 billion.) Pick your dollars and your numbers.

class papers/: wilson-alloc.ps, wilson-bigsurv.ps

9/29/99 12

Next: Storage Allocation, Garbage Collection

(class papers) boehmpldi93.ps

Boehm, H.-J. Space efficient conservative garbage collection. SIGPLAN
Notices, vol.28, (no.6), (ACM SIGPLAN ’93 Conference on Programming
Language Design and Implementation, Albuquerque, NM, USA, 23-25 June
1993.)

Here is Boehm’s home page with more references

http://reality.sgi.com/boehm_mti/

The harlequin annotated bibliography on Garbage Collection
http://www.harlequin.com/mm/reference/bib/gc.html

