
CS 264/Fall 1999

Richard Fateman 1

10/5/99 1

CS 264 Implementation of Programming
Languages
//9: Run-time: storage allocation, continued

Richard Fateman
Computer Science Division
Fall, 1999

University of California at Berkeley

10/5/99 2

What is Garbage? Who cares about it?

• Garbage: storage that cannot be referenced from the language
model at a particular time, (but is not on a “list” of available
storage)

• If you generate it and don’t collect it you may run out of
storage as your program continues to run.

• If your program is short running and you have lots of storage,
you can just fake it.

• Long running programs + leaks = crashes

10/5/99 3

Classic Mark and Sweep GC

• Out of storage? Then Start from Roots;
– Values of names that can be read in (looked up in symbol table)

– Active values on the stack

– Active values in registers

• Trace anything accessible from a root, and mark it
• Sweep through memory: anything unmarked is put on the free

list.
• Cost (all cells same size, various other simplifications)

– A=number of reachable cells

– M=number of cells that must be swept

– M-A = number of cells reclaimed

(C1*A+C2*M)/(M-A) = average cost for freeing a cell.

10/5/99 4

Classic Mark and Sweep GC: asymptotic
costs

• Cost (all cells same size, various other simplifications)
– A=number of reachable cells

– M=number of cells that must be swept

– M-A = number of cells reclaimed

(C1*A+C2*M)/(M-A) = average cost for freeing a cell

Mark and Sweep historically has been guilty of
bad real-time performance: it must stop useful /
interactive computation during GC. How long
might this be?

CS 264/Fall 1999

Richard Fateman 2

10/5/99 5

Classic Copying (2-space) GC

• Start from Roots;
– Values of names that can be read in (looked up in symbol table)
– Active values on the stack

– Active values in registers

• Two spaces: FROM and TO
• Trace anything accessible (in FROM) space and copy it to TO space.

(forwarding pointers, etc.)
• When complete, All live structure is in TO space.
• Reverse FROM and TO spaces and declare FROM space “the free

list”.
Cost (all cells same size, various other simplifications) {M is half size}

– A=number of reachable cells
– M-A = number of cells reclaimed
(C1*A)/(M-A) = average cost for freeing a cell.

10/5/99 6

Explicit Freeing (including popping an entry
off a stack)

• Cost (all cells same size, various other simplifications)
– F=number of cells to be freed.

– Simply proportional to F: c3*F

– When is copying GC faster? When F

C3*F>(C1*A)/(M-A) when M/A > C1/(C3*F)+1

If we can make M large (buy more memory!) the
conclusion is Copying GC is faster than Stack
allocation.

Do we believe Appel’s argument?

Is it somehow irrelevant?

10/5/99 7

Reference Counting

• Almost as old as GC (1960, REFCO)
• Higher cost, but real-time distributed with processing

– A=B increments B’s count,

– A=C then decrement’s B’s count, increment’s A’s

• Extra burden of storage
– How many pointers to a given cell?

– Possibility of abbreviation (0,1,2, many refs)

• Misses Circular Lists (red herring
• Used by Mathematica, Maple,
• More popular for (say) file references

10/5/99 8

GC implementation issues (historically)

• Mark bits?
• Stack: how much is needed? (VM to rescue?)
• When can GC happen ? {stack etc must be “legal”}
• Paging strategies/ Locality of memory for Lisp
• Responsiveness (Interactive requirements)
• Benchmarks that lie
• Cost of memory vs. computation
• (recently) Imperfect strategies
• Persistent storage

CS 264/Fall 1999

Richard Fateman 3

10/5/99 9

GC implementation issues (recently)

• CONS cells Å more irregular structures
– Where are the pointers?

– What about Union data types

• GC in languages not originally designed for GC
– C, C++,

– various experimental Algol-60 descendants

• GC + “restricted” C++ (etc)
• Partially GC’d + partially explicit memory management

10/5/99 10

GC variants

• Real time, Incremental
• Parallel (vs. Uniprocessor)
• Hardware assists
• Generational
• Conservative
• Interaction with persistent storage (databases)

10/5/99 11

Real time, Incremental

• Rationale: how much pause is OK
– Masked in other activities?
– Short in absolute terms (<250ms?)

• Old systems, slow CPU, slow memory, virtual memory
– Embarrassing behaviors

• Approach:
– mark a little at each allocation, depending on how close you are to

running out of memory
– 3-color of forest, starting from roots. Known free; possibly free.
– Details require careful analysis

• mutation / collection alternate in time
• Overall efficiency relatively poor.

10/5/99 12

Parallel (vs. Uniprocessor)

• Mutation vs collection at the “same” time
• Requires synchronization; basic idea is to force mutator to

wait (rarely).
• Efficiency gained by parallel processing may be masked by

loss from memory behavior
• Large memory systems proposals (Garbage Collection by

garbage truck)

CS 264/Fall 1999

Richard Fateman 4

10/5/99 13

Parallel: one method

• Assume OS can temporarily read-protect a block of
memory so that when a mutator attempts to read, it will be
interrupted.

• If, during a copy, a mutator process attempts to follow a
pointer from as-yet-unprocessed “FROM” space, it will not
know about forwarding to “TO” space. This is bad. So we
block it with read-protect, and allow the copying to
continue.

10/5/99 14

Hardware assists

• Extra mark bits for memory (vs. mark blocks)
• Validity bits (“this is a pointer”)in memory and registers
• Forwarding pointers
• Hashed pointers (with CDR-coding and forwarding)

10/5/99 15

Generational

• A real win. Variously claimed to have been invented by
MIT and UCB (Unger)

• Reduces time (could be considered an approach for real-
time, though not indefinitely) 25% Å 3% of time is typical

• Reduces memory activity
• Generally quite efficient: Avoids traversing long-lived

objects, furiously collects recently allocated stuff.
• Dominates implementations in Smalltalk, Lisp

10/5/99 16

Generational: the idea

• Divide objects into generations, each in separate memory.
• New objects are born into newest (0) generation
• When the “to” space fills up, copy live stuff into older

generation (1).
• Objects that survive (say) 2 GCs are copied into (“tenured”)

generation (2).
• Observed: objects die young.
• Usually ignore tenured objects for tracing. They point only

to even older stuff, also tenured. (Mildly false, must
correct)

• If we run out space, we may have to do multi-generation
GC

CS 264/Fall 1999

Richard Fateman 5

10/5/99 17

Generational: the idea

• We said ignore tenured objects for tracing. They point only
to even older stuff, also tenured.

• The problem: IF you destructively alter an old object X,
then X may point to a youngster Y in Gen (0). X must be
traced to prevent Y from being collected.

• Solution: put address of Y in a “remembered” list so it is not
deleted

• (Y may get falsely tenured, etc. Eventually forcing a full
GC)

• Parameters: how many generations, how large, etc. allow
for tuning, even dynamically.

10/5/99 18

Conservative GC

• Use GC for languages like C or C++.
• Big idea: If it looks like a pointer, trace it.
• If you trace stuff by mistake, what happens?

– You retain random stuff in memory because you thought there was
a pointer to it

– You waste some time tracing through random stuff

• Where are the roots? (Potentially)
– Data space: the values of variables allocated in local stack

– Global data space

– Machine registers

10/5/99 19

Conservative GC details

• What is not a pointer?
– Wrong bit pattern (alignment)

– Anything in a location that used to have a wrong bit pattern

– Wrong content (alignment OK, but out of range)

• What IS a pointer?
– Everything else

• What about structures, arrays, etc?
– It would be nice to know when you have arrays of floats

– It’s not necessary though.

10/5/99 20

Conservative GC details

• Problems (with pointer recognition):
– Pointers may be concealed via arithmetic or typing

– Pointers may be concealed outside the program space (other
processes?)

– Locations may be invalid / blacklisted and then made valid?

• Language issues: pointers to middle of structures
– Presumably *ptr-4 is a header with info on structure sizes, if not

types

– Forbid “&” operation?

CS 264/Fall 1999

Richard Fateman 6

10/5/99 21

Conservative GC details

• Other problems
– Copying / compacting is not supportable, so memory fragmentation

may be a problem.

– stack space used by the scanning could be excessive?

– Scan is still needed to find unmarked items, touching garbage
memory locations.

10/5/99 22

Interaction with persistent storage (databases)

• Different world view, but consider “weak pointers”
• Usual implementation idea is that you have a cache of

pointers to stuff, say in a hash-table that would get you
rapid access to material X, but the presence of X in the
hash-table doesn’t mean necessarily that X is live. Only the
presence of a “strong” pointer to X indicates that.

• Don’t trace with weak pointers as roots
• If weak pointer values are “forwarded”, or marked, then

update, else change them to nil.

10/5/99 23

Digression: Mathematica, the Language

• Generally “functional” and “symbolic”
• Object-oriented by generic functions, with patterns

f[x_] := x+2

f[x_,y_]:= x+y+2 /* 2 different args */

G[x_,x_]:= foo[x]

G[x__]:= bar[x] /* list */

H[a|b]:= p

H[a_*b_] :=TIMES

H[x_Integer]:= Abs[x]

H[x_?MyTest]:= Hello[x]
10/5/99 24

Digression: Mathematica, the Language

• Symbolic values: how do deal with them?
• Evaluate zero times “implicitly quoting”
• Evaluate one time “usual rules” e.g. in Lisp.
• Evaluate (e.g. substitute) until “nothing changes.”

y= g[x]+h[z] /* g undefined */

define g; what is y?

Define h; what is y?

Problem: if you always re-evaluate y each
time you mention it, and y is some hairy
structure with lots of function
applications, then checking them all out
can get slow.

CS 264/Fall 1999

Richard Fateman 7

10/5/99 25

Digression: Mathematica, the Language

• Heuristic solution in Mathematica: (apparently secret)
• Chronological dependencies
• Every variable has a time stamp (when last changed)
• Every variable has a dependency vector (what variables it

depends upon)
• When V’s value is needed, compare its time stamp with

the time stamps of its dependency vector. If it is newer,
then it can’t have changed.

• Otherwise, re-evaluate and update V’s time stamp.

10/5/99 26

Digression: Mathematica, the Language

• We lied a bit.
• Every variable V has a dependency vector (includes

“pages” that hold names that V depends upon)
• When V’s value is needed, compare its time stamp with

the time stamps of its dependency vector. If it is newer,
then V it can’t have changed.

• Otherwise, re-evaluate and update V’s time stamp.
• Problem: if something ELSE on one of those pages is

changed, then a re-evaluation will occur. Perhaps with side
effects. Apparently page assignments are nondeterministic.

10/5/99 27

Digression: Mathematica, the Language

v := g[x]+h[x];

h[x_?Tryit]:= nomatter;

Tryit[x_] := Block[{},Print[“hello”];
z=z+1;False] /* increments z, prints
hello, and always fails */

– The value of z cannot be known for sure.. If
something on h’s page is changed, the next time
we look at v, z will be incremented. Oh well.

10/5/99 28

Digression: Mathematica, the Language

Y= Table[I,{I,0,size}]

Do [Y[[j]]=Y[[j]]+1, {j,1,10}] /* only 10 iterations */

Loop time depends on how large the table is. A reference
to Y[[2]] means that Y[[1]] … Y[[1000]] must all be
evaluated since Y[[j]]+1 depends on Y and Y was changed…

Size= 10: time = 0.0 sec

1000 0.01

10000 0.06

100000 0.61

