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Readings:

• IA-64 at http://developer.intel.com/design especially
• http://developer.intel.com/design/ia64/downloads/adag.htm

– Sections 1-4, 8-9 (Applications Developer’s Architecture 
Guide

• IBM Research on VLIW at 
http://www.research.ibm.com/vliw/home.html
– Papers/hpca-97.ps 

• JILP?
• Tinker project at www.tinker.ncsu.edu/tinker (Lego compiler)
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Readings:

• On floating point:  look at 
– http://www.cs.berkeley.edu/~wkahan/ieee754status/

• ieee754.ps
• Other stuff as well

– David Goldberg’s paper “What every computer scientist should know about 
floating point arithmetic” Comp. Surveys, 1991 /papers/goldberg.pdf (44 
pages, pdf image)
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Idea behind VLIW

• Very-Long Instruction Word (VLIW) architectures 
are designed for exploiting instruction-level 
parallelism (ILP) in programs.

• Multiple functional units fetch from the 
instruction cache a Very-Long Instruction Word 
containing several primitive instructions, and 
dispatch the entire VLIW for parallel execution. 

• These capabilities are exploited by compilers 
which generate grouped code. 
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Is it a good idea?

• Early VLIW processors such as the Yale ELI, the Cydrome Cydra-5 
and the Multiflow TRACE were implemented, commercialized, and 
pronounced resounding failures.

• Today, commercial superscalars have apparently reached the 
limits of what can be done solely in hardware without severely 
impacting cycle time. 

• This has forced renewed interest in VLIW, as well as complex 
software, in the HP/Intel IA-64 alliance. 
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Goals of IA-64 architecture

• Increase instruction-level parallelism
• Manage memory latency
• Improve branch handling
• Fast floating point 
• Reduce procedure call overhead
• (Compete with RISC)
• (Compatibility with Pentium etc)
• (reliability, yada yada)
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What’s this called?

• Merced
• IA-64 (family)
• Itanium 
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Why is this significant to us?

• Interesting language / compiling issues
• Pushes many parts of the envelope in 

architecture
• Inserts novel complexities into practical 

system/application considerations.
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Why is this significant to the computing 
business?

• Since it is superset of Intel-32 bit 
– Software compatibility with Microsoft etc

• Jmpe (IA-32) jumps to IA-64 extended instr.
• Br.ia (IA-64) brances to IA-32 address/changes instr set

– Also significant UNIX vendor interest

• However, it is not alone:
– Alpha architecture (Compaq/DEC)
– RS-6000, Power-PC (IBM, Motorola, Apple)
– SPARC (Sun)
– IBM S/360, AS-400
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Easy intro via Intel web site

http://developer.intel.com/vtune/cbts/ia64tut
s/index.htm

(tutorials)

10/21/99 11

An easy call: Explicit data parallelism

• Pack up several data items in a single 
unit: 8, 16, 32 bit quantities: add/ mult/ 
average etc. in parallel.

• Multimedia / 3D graphics 
• Data can be bytes, integers, or single-

floats (e.g. exponent + 2 mantissas)
• Implications for programming languages?
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Trickier:  Instruction Groups / Bundles

• Divide up your instructions to avoid RAW 
memory (read after write), WAW conflicts.

• Try to execute them at the same time.
• Multiple execution units make this 

plausible.
• Compare to microcode of 1980’s
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IA-64  Instruction Bundles

• 128 bits = 3x41 + 5 bit templates
• The templates allow you to specific ends 

of instruction groups (;; in assembler)
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IA-64  Hints from the compiler or runtime

• Cache suggestions
– Every memory load/store has 2-bit cache field
– Indication of spatial and/or temporal locality

• Branch suggestions “completers”
• Branch Whether (spnt=static predict not taken)
• Branch Whether (dptk = dynamic predict taken)
• Sequential Prefetch (few, none, many)
• Cache Deallocation (none, clear)
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IA-64  Branch is even more complex

• Loop Count (LC) register 
• Register rotation provides register 

renaming
• Epilog Count (EC) used in While loops
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IA-64  Advanced Load / speculation

• Move a load as early in code as plausible
• Advanced Load Address Table (ALAT) 

entry is created
• Later, check to see if load is completed 

and still valid
– It must still be in ALAT
– All other memory-changing references must delete 

entry from ALAT.
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IA-64  Advanced Load / speculation

• Handling speculation afterward:
– ld.c rx= … Does the load if necessary, now.
– chk.a rx, recovery branches to label recovery if 

register rx is “NaT”

• Completer s= speculative prevents exceptions 
from happening if ultimately one does not use 
this load.  E.g.  ld.sa rx=bogus?
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IA-64  NaT (Not a Thing), NaTv

• NAT registers parallel to general registers
• NATV (not a thing values) in floating point 

registers  (selected NaN floats)
• Signals a computation not completed: 

recovery needed.
• For chk, recovery code must be generated 

by compiler/programmer 
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IA-64  Last notes on memory access

• lfetch line fetch (cache hint, ignorable)
• mf memory fence (forces ordering 

between prior and subsequent memory 
accesses ) used to synchronize memory-
mapped I/O.
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IA-64  Predication

The idea: Use compare to set two predication 
registers say p1 and p2 =not(p1). Then issue

(p1) Instruction..
(p2) Instruction..

“Start doing” all instructions. But don’t complete 
them all.

There are 64 p registers (1 bit each) p0=1 “true” 
Removes if-then-else branch Å parallelism exhibited
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IA-64  conventional control/branch prediction

if (r1) r2= r3+r4;
else r7= r6-r5;   // assume this is inside a loop

Using branch prediction, if the conditional in the code is
mispredicted 30% of the time and a miss produces a 10 cycle penalty, 
we will lose 3 cycles per loop execution.

regular IA-64 code
cmp.eq  p1,p2=r1,r0  //cycle 0

(p1) br.cond else-clause  //cycle 0
add     r2=r3,r4     //cycle 1
br      end_if       //cycle 1

else_clause:
sub     r7=r6,r5     //cycle 1

end_if:
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IA-64  Branch Prediction: static or dynamic

It is possible to predict branches dynamically or statically;
The application guide suggests that we can/should tailor static 
predictions by using “binary rewriting tools” at some point. 
(presumably a post-compiling pre-run-time “statistics gathering” time).

It would be possible in principle to overlay instructions at run-time 
but the tendency is for OS to reject this possibility in user-mode.

Dynamic branch prediction assisted by branch cache deallocation hint 
completer (sometimes the most-recently executed branch is not useful 
to remember, either because it will not be re-visited any time soon or 
because the instruction will re-supply the hint prior to next visit.)
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IA-64  Indirect Branches, Loop branches

A set of 8 branch registers are used for indirect branches

LC and EC registers support “counted” loops and “while” 
loops
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IA-64  Predication

cmp.ne   p1,p2=r1, 0 ;;// set p1 and p2 ;;=stop req
(p1) add    r2=r3,r4
(p2) sub    r7=r6,r5

// note that p1 and p2 are guaranteed complements
// no branch misprediction is possible. 
// This code is 2 cycles vs previous average 5 cycles.

// what if the then/else clauses are longer?
// we may lose out eventually with predication.
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IA-64  Predication

cmp.ne   p1,p2=r1, 0 ;;// set p1 and p2 ;;=stop req
(p1) add    r2=r3,r4
(p2) sub r2=r6,r5

//note we can also re-use registers with complementary predicates….
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IA-64 Downward code motion
ld8 r56 = [r45] ;; //cycle 0: load
st4 [r23]=r56;;    //cycle 2: store (oof)

Label:
add  … //cycle 3
add …  //

Vs
// point which dominates Label (explain)

cmp.ne p1,p0 = r0, r0  // initialize p1 to false (0)
// other stuff

cmp.eq p1,p0 = r0,r0  // initialize p1 to true (1)
ld8  r56=[r45] ;;// cycle 0

Label:
add … //cycle 1
add 

…
(p1) st4 [r23]=r56  //cycle 2
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IA-64  So many registers, Register stacks

• How many registers are enough?
– R0-r31 are global or static regs
– R32-r127 can be configured as stack
– Up to 96 can be allocated by alloc
– The stack registers are always addressed as r32 and 

up

• Register Stack Engine (RSE) manages 
overflow to memory
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IA-64  So many registers, rotate’em

• Rotating registers in multiples of 8: 
– Reg(n-1)Åreg(n) for  n<max
– Reg(max) Åreg(32)
– Alloc instruction specifies the max size.


