
CS 264/Fall 1999

Richard Fateman 1

9/8/99 1

CS 264 Implementation of Programming
Languages
//4: Interpreters, continued: lambda calculus//

Richard Fateman
Computer Science Division
Fall, 1999

University of California at Berkeley

9/8/99 2

Review what we mean by evaluation or
interpretation: lambda calculus

• Free vs. bound variables
– (lambda(x)(+ x y)) ; x is bound, y is free
– E[b/a] or E[aÄb] is the expression E with all

FREE occurrences of “a” replaced by “b”

• We can find bound/free confusing
– ((lambda(x) (+ x ((lambda(x)(+ x 7)) 3)) 4)
– The RED outer x occurs free here in red

• ((lambda(x) (+ x ((lambda(x)(+ x 7)) 3)) 4)
– The GREEN inner x occurs free here in green

• ((lambda(x) (+ x ((lambda(x) (+ x 7)) 3)) 4)

9/8/99 3

Lambda calculus: alpha conversion

– Replace all free occurrences of x by z, E[z/x] in
(+ x ((lambda(x)(+ x 7)) 3)) producing
(+ z ((lambda(x)(+ x 7)) 3))
.. This is quite different from what we started with
BUT
– ((lambda(x) (+ x ((lambda(x)(+ x 7)) 3)) 4) IS the same as
((lambda(z) (+ z ((lambda(x)(+ x 7)) 3)) 4)
– Changing (lambda(var)E) to (lambda (var’) E[var’/var]) is

alpha (a) conversion.
– a conversion is one rule we can use to transform

expressions to equal expressions.

9/8/99 4

Lambda calculus: beta conversion

– Replace all free occurrences of x by z, E[z/x] in
((lambda(x) E)z)) to produce the “meaning” of this

expression.
e.g. ((lambda(x)(+ x 7)) z)) MEANS (+ z 7)

{whatever that means}
– When this rule, beta (b) conversion is applied left-

to-right to tranform a b-redex (lambda(x)E) z) it is
called b reduction.

– b conversion is another rule we can use to
transform expressions to equal expressions.

CS 264/Fall 1999

Richard Fateman 2

9/8/99 5

Lambda calculus: beta conversion II

– Not always simpler:
• ((lambda(x)(x x)) (lambda(x)(x x)))
• b conversion leaves this unchanged.

– Since an expression can have more than one b
redex, there may be more than one way to reduce
an expression.

– Church-Rosser, confluence, or diamond property
(theorem) says if EÍE1 and EÍE2 with different
sequences, there exists some N such that E1ÍN
and E2ÍN

– Some strategies will not stop.

9/8/99 6

Lambda calculus: beta conversion III

– Consider ((lambda(x)(lambda(y) (x y))) (y w)).
• b conversion would seem to make this into
• (lambda(y)((y w) y)) but that can’t be right… (y

is not free!) so what to do?
• First do an alpha conversion to
• ((lambda(x)(lambda(g) (x g))) (y w)) then to
• (lambda(g)((y w) g))

9/8/99 7

Lambda calculus: Y

• You don’t have “define” in the lambda calculus so how can you use

recursion? E.g. f=(lambda(g)(lambda(n)(if (zero? n) 1 (* n (g
(- n 1)))))) how do you get g bound to something ?

• Need a procedure, call it Y such that (Y f) is the desired function. Then we
can bind g to (Y f) with the application (f (Y f)). Since f also returns the
recursive procedure, (Y f) = (f (Y f))

• Remarkably, Y can be defined by
(lambda(f) ((lambda (x)(f (x x))) (lambda(x)(f (x x)) which is known as the Y
combinator.

9/8/99 8

Applicative order reduction defines ordinary
Scheme

• An answer is a constant, a variable or (lambda …). Anything but an
application ((lambda…) …).

• A beta-reduction may be applied only if both the operator and operand(s)
are already answers, otherwise they can be beta-reduced, and must be.

• Operationally, we typically use left-to-right order, and we don’t make real
beta-reductions but look up bindings in environments.

• This brings us back to our interpreter, this time in tail-reduced form.

CS 264/Fall 1999

Richard Fateman 3

9/8/99 9

A properly tail-recursive version of interp

;; selections from interp in ~fateman/264/lisp/interp2.lisp…..
(defun interp (x &optional env)

"Evaluate the expression x in the environment env.
This version is properly tail-recursive."
(prog ()

:INTERP
(return

(cond
((symbolp x) (get-var x env))
((atom x) x)
((case (first x)

(QUOTE (second x))
(BEGIN (pop x) ; pop off the BEGIN to get at the args

;; Now interpret all but the last expression
(loop while (rest x) do (interp (pop x) env))
;; Finally, rename the last expression as x
(setf x (first x))
(GO :INTERP))

(IF (setf x (if (interp (second x) env)
(third x)
(fourth x)))

;; That is, rename the right expression as x
(GO :INTERP))

;..stuff omitted
))

