
1

11/11/99 1

Symbolic Mathematical Computing
and Problem Solving Environments

for Scientific Programming

Richard Fateman
Computer Science Division, EECS
University of California, Berkeley

11/11/99 2

Outline

1. Introduction

2. Symbolic Mathematics Components

3. Symbolic Manipulation Systems as Glue

4. Objectives for Symbolic Computing

5. Future tools and problem areas

11/11/99 3

PART I: INTRODUCTION

• Symbolic Computation is a superset of Numeric Computation

– Symbolic includes Numeric, Graphical, but allows some level of
data = program (Lisp, but also evident in executable strings or
expressions in other systems.)

– Computer Algebra Systems (CAS) are becoming more inclusive
interactive environments (Mathematica, Maple, Macsyma, Axiom,
MuPad)

• Commercial CAS are being joined with other commercial
environments (e.g. MathCAD+Maple, Scientific Word + Maple, new
Mathematica text editor, ...)

11/11/99 4

Computer Algebra: DATA TYPES

• Functions (mathematical and/or computational) + * log,
sin, Bessel, …

– Not just numerical evaluation

– Differentiation, Integration, Simplification,
Approximation (series, expansions, economization…)

• Domains (real numbers, polynomials over the integers …)

• Arbitrary structures for symbols, strings, tables, trees,
numbers.

• Generally extracts some costs (efficiency on simple
domains)

2

11/11/99 5

PART II: SYMBOLIC COMPONENTS

• Environment vs toolkit
– It is hard to tease out individual pieces
– [storage model, abstraction, run-time

semantics]

• (and futile to do so, in some cases)
• System Objectives:

– Doing mathematics in support of computation
– Doing what other systems do plus more

11/11/99 6

Program that manipulate programs

• Assemblers, interpreters,

• (pre-) Compilers, macro-expansion, etc.

• Advice takers (Teitelman)

• The symbolic view is that

expressions <==> programs <==> data

11/11/99 7

Example of Advice (in Lisp)

to avoid complex results from sqrt one can ‘‘advise’’ sqrt
that if its first argument is negative, it should instead print a
message and replace the argument by its absolute value.

(advise sqrt :before negativearg nil
(unless (>= (first arglist) 0)

(format t
"sqrt given negative number. we take (sqrt(abs

~s))"
(first arglist))

(setf arglist (list (abs (first arglist))))))

11/11/99 8

Manipulating Fortran: Bessel Function
evaluation (from Numerical Recipes in

Fortran)

…(selected lines…)

DATA Q1,Q2,Q3,Q4,Q5,Q6,Q7,Q8,Q9/0.39894228D0,-
0.3988024D-1,

* -0.362018D-2,0.163801D-2,-0.1031555D-1,0.2282967D-
1,

* -0.2895312D-1,0.1787654D-1,-0.420059D-2/
...

BESSI1=(EXP(AX)/SQRT(AX))*(Q1+Y*(Q2+Y*(Q3+Y*(Q4+
* Y*(Q5+Y*(Q6+Y*(Q7+Y*(Q8+Y*Q9))))))))

...

3

11/11/99 9

Bessel Function evaluation in Lisp (1)

(setf
bessi1
(* (/ (exp ax) (sqrt ax))

(poly-eval y
(0.39894228d0 -0.3988024d-1 -0.362018d-2 0.163801d-2
-0.1031555d-1 0.2282967d-1 -0.2895312d-1 0.1787654d-1
-0.420059d-2))))

Just rearranging the coefficients. What is poly-eval
function?

11/11/99 10

Bessel Function evaluation in Lisp (2)

(let* ((z (+ (* (+ x -0.447420246891662d0) x) 0.5555574445841143d0))
(w (+ (* (+ x -2.180440363165497d0) z) 1.759291809106734d0)))

(* (+ (* x (+ (* x (+ (* w (+ -1.745986568814345d0 w z))
1.213871280862968d0))

9.4939615625424d0))
-94.9729157094598d0)

-0.00420059d0))

Poly-eval can do an in-line expansion that is then compiled.

Advantages include fewer multiplies (6, not 8) one more add (9,
not 8) but somewhat moreoverlap for superscalar processor.

11/11/99 11

Bessel Function evaluation in Lisp (3)

Can we/ should we do this? Generally we need a “license” for
rearrangement of code.

If the programmer/ designer really wanted EXACTLY this
sequence of computations, we would have to respect that.

Why a higher-level model is nicer than a program if the algorithm
can then be improved to better code.

11/11/99 12

Another example: the Euler Equation

The Euler equation is a favorite benchmark of Celestial Mechanics
symbolic calculation programs.

E = u + e sin (E)

as commonly solved iteratively (for small e) gives this
4th order expansion for E= u+A

4

11/11/99 13

The Euler Equation, 4th order solution

E= u+A where A is

4 3 2 4
e sin(4 U) 3 e sin(3 U) (12 e - 4 e) sin(2 U)

A = ----------- + ------------- + -----------------------
4 3 8 24

3
(24 e - 3 e) sin(U)

+ --------------------
24

11/11/99 14

The Euler Equation, 4th order solution

In Fortran as rendered by Mathematica 2.0 (buggy):

FortranForm=
- (24*e - 3*e**3)*Sin(U)/24 + (12*e**2 -4*e**4)*Sin(2*U)/24+
- 3*e**3*Sin(3*U)/8 + e**4*Sin(4*U)/3

Note: in Fortran, 1/3 is computed as 0; this
formatting is dangerous

11/11/99 15

The Euler Equation, 4th order solution

in Mathematica … if we call… Expand[N[%]]

FortranForm=
- 1.*e*Sin(U) - 0.125*e**3*Sin(U) + 0.5*e**2*Sin(2.*U) -
- 0.1666666666666666*e**4*Sin(2.*U) + 0.375*e**3*Sin(3.*U) +
- 0.3333333333333333*e**4*Sin(4.*U)

What are the precisions of the constants? Why do we
multiply by 1.?

11/11/99 16

The Euler Equation, 4th order solution

Maple produces

t0 = e**4*sin(4*U)/3+3.0/8.0*e**3*sin(3*U)+(12*e**2-4*e**4)*sin(2*
#U)/24+(24*e-3*e**3)*sin(U)/24

or after floating-point conversion using evalf

t0 = 0.3333333E0*e**4*sin(4.0*U)+0.375E0*e**3*sin(3.0*U)+0.4166667
#E-1*(12.0*e**2-4.0*e**4)*sin(2.0*U)+0.4166667E-1*(24.0*e-3.0*e**3)
#*sin(U)

What are the precisions of the constants? Do we
really want to compute e**4 repeatedly?

5

11/11/99 17

The Euler Equation, 4th order solution

After convert(expr,horner,[e]) Maple produces:

t0 = (sin(U)+(sin(2*U)/2+(3.0/8.0*sin(3*U)-sin(U)/8+(-sin(2*U)/6+s
#in(4*U)/3)*e)*e)*e)*e

Somewhat inconsistent.. 3.0/8.0? But close…

We don’t compute e**4 repeatedly, but what about
exploiting the dependency relationship between
sin(u) and sin(2u)?

11/11/99 18

Sin and Cos computation

s := sin(u)
c := cos(u)
s2 := 2*s*c ;; this is sin(2u)
c2 := 2*c*c-1 ;; this is cos(2u)
s3 := s*(2*c2+1);; this is sin(3u)
s4 := 2*s2*c2 ;; this is sin(4u)

There’s an even better way for higher order,
requiring only 2 mults and 2 adds for each new
sin/cos pair.

11/11/99 19

Sin and Cos computation even faster…

k1=sin(u), k2=4*k1^2,

The inner loop is
s[I] := s[I-2]+c[I-1] //sin(I*u)/sin(u)
c[I] := c[I-2]-k2*s[I] //cos(I*u)
Where you compute sin by
Sin(n*u) is k1*s[n]

Note: you have to run this out to n+2 for s[n] to be sin(n u)
And you should precompute s[0]=sin(u),s[1]=1, c[0]=1, c[1]=cos(u).
It proceeds by computing s[2]=sin(2u)/sin(u) but then corrects it
later by
Multiplying by k2.

No computer system comes close to recognizing this.

11/11/99 20

Derivatives

Many students who having studied the use of a ‘‘symbolic’’ language
like Lisp will have seen differentiation as a small exercise in
tree-traversal and transformation. They will likely view closed-form
symbolic differentiation as trivial, if for no other reason than it can be
expressed in a half-page of code:

6

11/11/99 21

Derivatives in Lisp; irrelevant though

(defun d(e v)(if(atom e)(if(eq e v)1 0)
(funcall(or(get(car e)’d)#’undef)e v)))
(defun undef(e v)‘(d,e,v))
(defun r(op s)(setf(get op’d)(compile()‘(lambda(e v)(let((x(cadr e)))
(list’*(subst x’x’,s)(d x v)))))))
(r’cos’(* -1(sin x)))
(r’sin’(cos x))
(r’exp’(exp x))
(r’log’(expt x -1))
(setf(get’+’d)#’(lambda(e v)‘(+,@(mapcar #’(lambda(r)(d r v))(cdr e)))))
(setf(get’*’d)
#’(lambda(e v)‘(*,e(+,@(mapcar #’(lambda(r)‘(*,(d r v)(expt,r -1)))(cdr
e))))))
(setf(get’expt’d)#’(lambda(e v)‘(*,e,(d‘(*,(caddr e)(log,(cadr e)))v))))

11/11/99 22

Derivative of a program?

Viewing a subroutine as a manifest representation of a mathematical
function, we can try to push this idea as far possible.

.
The alternative is using a ‘‘numerical’’ derivative of f(x) at a point c
computed by chosing some small Delta and computing
(f(c+Delta)-f(c))/Delta.

Numerical differentiation yields a result of unknown, but probably low,
accuracy.

(Useful literature has developed in the last 2 decades: ADIFOR at
Argonne National Lab for example)

11/11/99 23

Other closed forms from CAS

Integral of 1/(z^5+1) in Fortranform from Mathematica

(Sqrt((5 - Sqrt(5))/2.)*
- ArcTan(2*Sqrt(2/(5 - Sqrt(5)))*
- ((-1 - Sqrt(5))/4. + z)))/5. +
- (Sqrt((5 + Sqrt(5))/2.)*
- ArcTan(2*Sqrt(2/(5 + Sqrt(5)))*
- ((-1 + Sqrt(5))/4. + z)))/5. + Log(1 + z)/5. -
- ((1 - Sqrt(5))*Log(1 - ((1 - Sqrt(5))*z)/2. +
- z**2))/20. -
- ((1 + Sqrt(5))*Log(1 - ((1 + Sqrt(5))*z)/2. +
- z**2))/20.

This is probably OK. What about 1/(z^64+1)
vs numerical integration?

11/11/99 24

Exact or high-precision values

Arithmetic on objects of variable size is offered:
Most CAS support exact integer and rational computing.
Rational domain cannot handle exponential, log, trignometric function
computing Å arbitrary-precision floats.

exp(pi*sqrt(163))=262537412640768743.9999999999992500726.

This last expression is not an integer, but it is
very close.

7

11/11/99 25

Documents/ Electronic Notebooks

Output as TeX, html, xml, mathml,
Notebooks (Mathematica, Maple, Macsyma …)
Spreadsheets (Theorist, MathCAD)
Graphics into AVS, other graphics packages

If the purpose of computing is insight, the
documentation and analysis must play a role in

the problem-solving environment.

11/11/99 26

PART III GLUE

Output as TeX, html, xml, mathml,
Notebooks (Mathematica, Maple, Macsyma …)
Spreadsheets (Theorist, MathCAD)
Graphics into AVS, other graphics packages

Why should computer algebra systems work
better than (say) Perl or Tcl/Tk or Python or

other scripting languages?

