Parallel Computing Languages
(a selective viewpoint)

Richard Fateman
Computer Science Division, EECS
Univergty of California, Berkeley

11/16/99 1

Subdivision of possibilities

* Large grain parallelism: PL links to OS
(www.openmp.or@APls for Windows, UNIX)

 Explicitly parallel vector (SIMD): languages like
HPF or CM-Lisp

» Small grain parallelism (MIMD), typically with
shared memory: anything goes

« Distributed (network) computation, usually
MIMD: lots of activity

* Intermediate levels: light-weight threads

11/16/99 2

Subdivision of approaches

 Everything can be executed in parallel
unless | say otherwise.

» Nothing can be executed in parallel unless |
say otherwise.

» The compiler should figure out what can be
executed in parallel

11/16/99 3

A few issues for evaluation

» Beauty, simplicity, completeness, fairness
» Robustness (many processearssome fail)
 Relationship to real architectures
» Throughput
— Speed (result appears fast)
— Cost (many processors doing useful work)
— Scaling (linear, super-linear?)
» But probably, Just Speed (HPC is big bucks)

11/16/99 4

A few implementations worth talking

about..
* Fortran 90 / HPF

» Math-P (one of several Matlab-like parallel

systems)

Parallel lisps

— Qlisp

— Multilisp

— Commercial shared memory

— Connection Machine (CM2) Lisp
 Titanium? Split C? C*, Data Parallel C

11/16/99

Fortran 77 = Fortran 90

Thisis Fortran 77 code

subroutine demo(a,b,c,n)
dimension a(n), b(n), c(n)
common /ecomy/scratch(10000)
do100i=1,n

i) =b(i) + i)

if (a(i).gt.100.0) then

ai) = a(i) + scratch(i)

goto 100

endif

oi) = a(iy2

100 continue

end

It's also Fortran 90 code, since Fortran 90 is a superset of Fortran 77.

11/16/99

... but

Fortran 77 = Fortran 90

This is (more idiomatic) Fortran 90 code
module Vecom

real, dimension(10000) :: scratch
end module Vecom

subroutinedemo(a, b, ¢, n)
USE Vecom
integer n /lidummy arguments
real, dimension(n) :: a b,c
integer :: | /iNocal variables
a=b+c
where(a>100.0)
a=a+ scratch(:n) ///notable change
elsewhere
c=a2
end where
end subroutine demo
11/16/99

An aside; Fortran 77 = Fortran 90

conversion $

From PSR’s web page...

VAST/77t090's price is meter based. That is, the price is determined based

on the number of Fortran 77 lines that VAST/77t090 successfully translates

to Fortran 90. VAST/77t090 keeps arunning total of the number of Fortran
77 input lines that it has translated. Once this total exceeds the level that
you purchased, you will need to get anew license if you would like to do
further translation. The introductory price is only $125 for 2,500 lines.

11/16/99

High Performance Fortran
Why HPF? (e.g. from VAST-HPF) (Pecific-Sierra Research)

HPF isan extension to Fortran 90 that allows programmers to write efficient
code for adistributed memory parallel system. A properly constructed HPF
program will run efficiently on many kinds of parallel systems, with few or no
coding changes. It is much easier to understand and maintain than other
programming models for distributed parallel systems suchas directly coding
in calls to amessage passing library. In fact, for most systems VAST-HPF
generates calls to message-passing routinesin place of the original HPF code.

11/16/99 9

HPF includes (1) :

PROCESSORS directive; describes the number and structure of the
processors.

TEMPLATE directive; describes an abstract index space to be aligned
with other arrays.

ALIGN directive; describes how array elements match up in memory.
DISTRIBUTE directive; describes which array dimensions are
distributed, and whether they are BLOCK, CY CLIC, or both.
DYNAMIC directive; needed to declare arrays that can have their
alignment or distribution changed at run-time with the REALIGN and
REDISTRIBUTE directives.

INDEPENDENT directive; used to declare iterations of aloop to be
independent of each other.

11/16/99 10

HPF includes (2):

FORALL construct; used to specify parallel array element assignments.
PURE procedures; used to mark procedures that have no side effects
and that can be called in parallel within loops.

EXTRINSIC procedures; used for procedures outside of HPF (in other
languages, for instance).

SEQUENCE directive; used to mark situations that depend on the
order of variables or elementsin memory.

Additional intrinsics, including numerous new array intrinsics, inquiry
functions, etc.

11/16/99 1

PSRV'’s suggestions on how to convert:

There are three main tasks in converting existing Fortran 77 programs into new HPF programs:

Create data distribution directives. Thisis the most critical task for performance on systems
with distributed memory.
http://www.psrv.com/77toHPF/distrib.html

Expose parallelism. To get execution on multiple processors, most HPF compilers require
explicit parallelism in the form of array syntax or FORALLS; afew can automatically
parallelize DO loops.

http://www.psrv.com/77toHPF/arraysx.html

http://www.psrv.com/77toHPF/forall.html

Clean up old code.

11/16/99 12

Parallel lisp: the blossoming; the

. *
By contrast: the Math* P approach withering
« Early 1980s, a raft of computer companies started up
with parallel shared-memory processing capabilities
*Ridge-32, Encore, Perkin Elmer, Sequent, LMs ...
*Ripe for parallel language and OS ideas
» Some academic efforts as well (e.g. Concert/MIT
made of MC68000s, Bath Univ.)
*All died (pretty much) by 1990

Use a comfortable language level: minimal change to Matlab;
Make the parallelism invisible to the user.

A=0nes(1000*p,1000) //create a matrix of 1's
B=0nes(1000,1000*p)

1000*p indicates that A is distributed on (up to 1000)
processors in parallel by rows, and B by columns.

really we get parallel sparse (or here, dense) matrices, and all
the built-in subroutines of Matlab (in Math*P) know about how
to deal with these objects (really implemented on MPI)

(work by A. Edelman, {MIT, UCB}, Parry Husbands {LBL})

11/16/99 13 11/16/99 14

Queue-Based multiprocessing Lisp
(Gabrid, McCarthy, 1985)

» Shared memory architecture assumed (Consistent
with Lisp pointers)

« Possible to limit degree of multiprocessing at runtime
» Minor damage to language

* Ordinary Lisp should take on new meanings in

QlLet

(glet pred ((x1 argl) ... (xn argn))
statementl
statement?2)

11/16/99

parallel contexts rather
« Everything should work with only one processor as
well.

11/16/99

Where pred is evaluated first to nil or eager or
something else. NiP> glet is like let :
(let ((x1 argl) ...(xn argn))

statementl

statement?2)

16

11/16/99

Qlet -2

If pred evaluates to non-Nil, some multiprocessng
happens (non-eager...)

Start processes for evaluation of each argi going.
When all the results are known, start statementl etc.

If pred=eager

Also start statementl at the same time. This may lead
to waiting when the “empty” values of xi's are
encountered.

17

Qlet-3

Pred should most likely do something like this:
if we have more processors available than processes
and there are some non-trivial computations
Then do them in parallel...

(defun gfib(n depth)
(if (<==n1 1

(glet (> depth 0) ;; no parallel if false
((nl (ofib (- n 1) (- depth 1)))
(n2 (afib (- n2) (- depth 1))))
(+ n1 n2))))
11/16/99 18

11/16/99

QCatch

Recall (catchtag form) receives a non-local exit
resulting from the execution form of the expression
(throwtag)

In a multiprocessing context, formis a glet, then a
throw from any parallel process halts them all.

Qcatch differs from catch in that if a value is returned

from form, it still waits for all sub-process spawned to
finish.

19

Unwind-protect

Recall (unwind-protedbrm cleanup) regardless of
what happens iform, thecleanup code is executed.
Extended for parallel processing, requiring that the
cleanup code be un-killable.

11/16/99 20

11/16/99

Shared or Shredded?

Synchronization requireslocks, excluson; it is
demonstrated how this can be done with catch and
throw;

Can aprocesskill another? No, but with proper setup,
a process can be forced to “commit suicide”.

21

11/16/99

Why not just “pcall”

(pcall f argl arg2) would evaluate all of f's args in
parallel. Rejected on the basis that collecting
arguments is too complex in Common Lisp. How
many args do you “wait” for?

[Somewhat solved by not using Common Lisp]

11/16/99

Multilisp (Halstead)

(pcall f argl arg2) not only evaluates all of f's
args in parallel, but f as well. The value is returned
only after all processing of args is complete.

The idea is implemented through a ptiwe future
construct.

(future form) immediately returns, but starts up a

process to compute form. An attempt to use the future
prematurely forces a wait.

23

11/16/99

Multilisp primitives

(future ..) creates a new task for its parent in LIFO
order (like UNIX fork or vfork)

(delay ..) creates a new task but does not enqueue it fo
execution.

Delay is used for lazy evaluation, call when needed.

24

11/16/99

Multilisp primitives

Locks available viaatomic operations: replace, and
replace-if-eq which can be applied to any lisp pair.

(replace L V) reads|ocation L and replacesit with V.
(replace-if-eq L V X) requiresthat the valuein L be X.
... replace is theoretically sufficient, though clumsy.

An interesting observation:

“for many programs... increasing the number of
simultaneoudy active tasks per processor has no effect
on speedup, but quickly increases the amount of free

storage required.”
25

11/16/99

Multilisp implementation issues

The number of stacks grows (one per process); if the
memory model is not sparse, then stack overflow
becomes an issue

Tag checking: any object could be a future. Claim is
that declarations are largely defeated (but... See O.
Shivers Control Flow Analysis in Scheme)

Multilisp was implemented on Concert, a multi-

processor SINGLE USER machine dedicated to
multilisp

26

11/16/99

(Commentary from a MACH-head
in Topics in Adv Lang Imp: “Futures” by
Alessandro Forin)

He is optimistic about experience of paralle lisp (Mul-
T based on Yale’'s T scheme and Multilisp)

“The new incoming wave of non-uniform memory

multiprocessors should also do well with parallel
Lisps, as indicated by the experiences with Multilisp.”

27

What exists in commercial lisp today?

11/16/99

Multiprocessing needed for interaction with user
interface models (graphics API), emacs, socket
management in web interfaces, etc.

Examples, Harlequin/Lucid, or Allegro CL similar

28

Lightweight process threadsin ACL

modeled after MIT lisp machine design..

Lisp internally maintains a scheduler; a structure
describes each digible process (stack-group); lisp
looks at itsrun-reason list; checksits arrest-reason list;
aprocess that needs to wait for some condition
specifiesit ina process-wait function.

Stack-groups are private, but shared global vars (etc)

are possble. There are process-lock mechanisms as

well as “without-scheduling” and “without-interrupts”
to protect short pieces of mutator code.

11/16/99 29

11/16/99

CM-2

*Many processors (100 to 100,000) with possible
simulation of even more virtual processors

*Small local memory (8kbytes on CM-2)

+Single instruction multiple data SIMD execution
*General purpose router connects processors

* TMC defunct, but data mining operations now part of
Oracle...

CM-2 “*Lisp” big ideas

* Inspired by Backus’ FP and Iverson’s APL

» Uses Common Lisp as base language

« Perhaps requiring lazy data structures (depending on
how difficult bits are resolved in semantics)

« Data driven parallelism rather than control structure
parallelism

11/16/99 31

11/16/99

CM-2 “*Lisp” data structures

*Fine-grained data-oriented parallelism
*Data structure called>apping (pronounced zapping)

*Unordered collection of ordered pairs

*Maps index>value

*Example: {ren> 1800 fooc> 535 pge>100}

eInfinite xapping 5}

*Combined {boy>blue gir>pink —>green}
*Operations on the entries may be performed in
parallel as thougkach element were contained in its
own processor, e.g. for search
*Index can be any Lisp object

11/16/99

CM-2 Lisp (*Lisp)
(xref {{sky—=>blue apple>red} ‘apple)=> red
If index= value, just one item is necessary. E.g.
(funcall {{->+} {10 20 30 }{ =>3}) {13 23 33}

This xapping is called xet (pronounced zet)

11/16/99

More *Lisp notation

If a finite xapping has a set of indices012 ...

Then we can abbreviate {8a 1>b ...} as

[ab...] note: [] not {}

This is called aector (rhymes with vector)

A Lazy xapping {* sqrt} maps every number to its sqrt.
A constant xapping® 3} always has value 3

A universal xapping £} is the xet of all objects.

11/16/99

More *Lisp notation

The apply-to-all operator (inspired by Backus's FP) is
a.

(of ‘[2 3]) = [(f1) (f 2) (f3)]. Think ofaf as
producing a “zillion” f's ...

AN EXAMPLE
(acons {a>1 b>2 >3 d>4 f>5}{b >6 d>7
e>81>9}) > {b>(2.6) d>(4.70)>(5.9)}

What did that mean?

Those calls are executed in parallel and resynchronization
occurs when the result xapping is to be constructed

11/16/99

a distributes over function calls More consequences
aecisc
Consder (a+ a2 a3) and a(+ 2 3). Both produce{>5}. The expression given can be understood as specifying
a computation with a single thread of control operating
Suppose we wi sh to compute 32+c* (9/5) over axapping C. on arrays of data. Theesignals things to be done in
(a+ (o* cal.8) a32). Say wewishalig of pairs cand parallel with the < prefacing data values that differ
32+1.8c. from process to process.
Thisgetstiresome.
If every expression can be prefaced with a we can move it out (funcall {{->+} {10 20 30 }¥{ >3}) {13 23 33}
front. But if some cannot, likec, we have to make an
exception. Similar to the backquote and comma in ordinary (o+ +‘[10 20 30] 3]~ [13 23 33]
lisp, *ligp doesthis:
a(list ec (+ (* «c 1.8) 32)).
11/16/99 37 11/16/99 38
More *Lisp notation Oops More *Lisp notation
The symboB is used to indicate permutation and The symboB is not doing “beta reduction” in the
reduction. That is3f x) takes a binary function f and lambda calculus. TMC people were apparently
a xapping x and returns(f (f ..(f ..))). running through the Greek alphabet.

[written as f/x in FP and APL]
(B+ foo) adds all the element§nfax foo) is max

These reductions can be done in any order, so it had
better be associative.

(B(lambda(x y) y) foo) returns some element, possibly
random.

11/16/99 39 11/16/99 40

More*Lisp

Other functions
(donein ‘{sky ->blue grass ->green}) => {skygrass}

(enumerate ‘{sky blue grass >green} =>{sky =0
grass >1} or maybe {sky >1grass -0}

Xunion and variousrelated composition functionsare useful

11/16/99 41

Natural representation of 2-D sparse
matrix
{0>{4>14} 1>{1>673>23}}
Row0Ois 000014
Row1lis 0670230

Etc (abnormal in that it numbers rows/cols starting at 0,0..)

11/16/99 42

Important operation: parallel f-prefix or
Scan
Run the operation f over all prefixes of a vector x. (In APL
fix)
(scan#'+ [123472Pp [136101719]

This can be implemented so as to execute in time logarithmic
in the number of beta permutation operation®{@—14}
1>{1>67 3>23}}

11/16/99 43

How to define the semantics?

With a meta circular evaluator, of course.

11/16/99 a4

11

Tricky parts

It appearsthat if one does certain computations as
specified

1. Infinite xappings are required (infinite= over all
ligp objects) even when results are very finite.

2. Procedures with sde-effects/ order dependent can
have various semantics

11/16/99

What has evolved from this?

Probably the most prominent remaining research
activitly in thisareaisthe NESL activity at CMU

http://www.cs.cmu.edu/~scandal /ned .html

(Thisisan ML-like syntax language, fredly distributed
but running on top of ... Common Lisp in a Unix-
like operating system. For the full NESL release
you will also need a C compiler, lex, yacc, and if
you want the graphics routines, an X11 library.)

11/16/99

NESL tutorial...

http://www.cs.cmu.edu/~scandal /ned /tutorial 2.html

And neat graphics demos, written in (?) NESL or
Java?

11/16/99

a7

SIAM News Nov. 1999

Developers of parallel applications can
be faced with the problem of combining
the two dominant models for parallel
processing—distributed-memory and
shared-memory parallelism—within one
source code. In this article we discuss
why it is useful to combine
these two programming ————
methodologies, both of APPLlCﬁ
which are supported on
most high-performance A DVAN (
computers, and some of the A R C H IT
lessons we learned in work
on five applications. C O M P U

12

SIAM News Nov. 1999

“ombining Message-passing and
Directives in Parallel Applications

8y Steve Bova, Clay Breshears,
Rudolf Eigenmann, Henry G
Greg Guerier, B> K, Bi Magro,
Stefana Salvini. and Veer Votsa

el tasks accons distributed compute
iodes. whereas OpenMP exploits paral-
Ielisen ithin mlisprocessor nodes. One
of our applications. SPECsei96, imple-
ments message-passing and shared:

nich

befaced of combiniog
e two dominant madels for purlll
processing—distributed-menocy and

the w0 models.

SIAM News Nov. 1999

Faster than a Speeding Algorlthm

By Barry A. Cipra

The 1999 Wilkinson Prize for Nu-
merical Software was awarded at ICLAM
99 to Mattco Frigo and Steven Johnsan
of MIT for their development of saft

cach ICIAM since 1991

“The fast Fourier trasforin
(FFT) itslf. on of the wark-
horses, of seicniific computa-
tion, has been arovad for more.
than three decades. A lot of

posesing_dnmoustmeon v e dusbedthe FETW. Thatashonlr - work s onsnto wrilng -
soue o s ik we dcins M Open? v s o rigo, who recently comy i programmers are incrasin
why il s el mwmbmr nthe C ap Frigo. wh ly compleicd aPhin progr easingly

ihese o progea

plicatian lo improve (h

methadologies. borh of APPLICATIONS ON pulumunu of harba

which wrc supported on
most high-pertarmance

analyses. The project
“Dual-ievel parallel ana

computers, and some of e ARCHITECTURE ysisof harbor wave respoms
fessons we eamod i work COMDUTERS ing MPL nd Orabt?

o five applcations.

o the Most Kifective £

Mkuunpvlvwlmmvnake Greg Astalk, Editor g.m., gMethadologyawa

use of 1 proge
el mesiage g
as reprosented by the PYM.
orMPLibriries. andthe shared-memory

computerscience. and Johnson, grad-
ate swdent in physics, began work un
e projectin 1997, as asidclight 10 their
respective theses. Some sidelight. The

FTW has become the poster child for

matically adapts itself to the hardware
encountrs

The Wilkinson Prize, named in honat
of the matrix maven James Hardy
Wilkinson, is sponsored by Argonne

hrd pressed 1o mike full use
of the processing specds of
lotay’s computers: Code that
ficsonone muchine may crasl
onanather. Given the growing
complexity of computct archi
ectures and the rapid cvolu
tion of chip designs, finding
an optimal implementatian of
ihe KT foranew computer s
tedious, of.

Sinca 1991, tho .+, Wikinson Prize for Nomarical
Softwara has sorved 10 encourage yaung researchers
0 tu thoi ideas and plgaritoms. into high-qualy
sotoare 2t wouls be Svaiabie o
Shown nare at IC1AM 99 are the FFTV tea
Figo,) an Stevst Somnson tund o lem i

siyle, as represented by the OpenMP Ponce Inleton Florida's Adantic coast| Natonal Laborstory inthe US. cadhe Youcan spendall you e 19951

directive standard. In all but one of the The sca state n # harbor is charact | Physical Laborato- ot woxkon - dsolee”

applications, Fy(NPL y That's 2 wnh]zm for scientific com-
xploit computer architectures thal in- ponents, which arc dofined by peric {NAG). The price has boen awarded st by the b you'e dones 1 e s Algorithm s pose #

clude hoth shaed- and distributed-
memory sysems. Mersagepusing is

ampiitude, and direction. This st
wave componens can be regarded a

o poss

11/16/99 49 11/16/99

SIAM News Nov. 1999

The fast Fourier transform
(FFT) itself, one of the work-
horses of scientific computa-
tion, has been around for more
than three decades. A lot of
work has gone into writing ef-
ficient implementations. But
programmers are increasingly
hard pressed to make full use
of the processing speeds of
today’s computers: Code that
flies onone machine may crawl
on another, Given the growing
complexity of computer archi- since 1991, the J.H.

11/16/99

tectures and the rapid evolu-
tion of chip designs, finding
an optimal implementation of
the FFT for a new computer is
tedious, painstaking—and of-
ten pointless—work.

You can “spend all your life

Software has served tc
to turn their ideas an
software that would b
Shown here at ICIAM
Frigo (left) and Steven
Linda Petzold, the first t
Alan Carle (who sharea
in 1995).

trying to figure out how to best work on obsolete.”
aparticular machine,” Johnson says, and That’s 2
“by the time you're done, that machine is

51

13

