
CS 264/Fall 1999

Richard Fateman 1

10/21/99 1

CS 264 Implementation of Programming
Languages
//12: Debugging

Richard Fateman
Computer Science Division
Fall, 1999

University of California at Berkeley

10/21/99 2

Readings:

• Your favorite debugging system
• copperman.pdf,
• tice.pdf
• Hennessy, TOPLAS 4(3) 1982

10/21/99 3

How do YOU debug a program?

Run analysis programs (compiler,
lint).
Ask a friend to read it.
Retrospective analysis. “Core dump”
On-line interactive break/examine
On-line edit/change code “DDT?”
Insert (conditional) print statements

…if debuglevel> 4 then print(“stuff”)
Insert assertions
TRACE, TRACE/WHEN, SINGLE-STEP, ADVISE,

10/21/99 4

What assistance can be provided by the PL
implementation?

• Source code sequencing (li r63, n; at statement n)
• Symbol table info / profiling data
• Extra info on stack (names, arg-counts)
• Extra diagnostics on exceptions (who divided by
zero?)
• Careful static checking / compilation (“-wall”)
• Standard vs. language extensions
• Run-time checks

• Array bounds
• Memory consistency (GC)
• Type checks (if language is weakly typed)
• Stack discipline

• Instrumented runs – timing, checking assertions
•Proofs (?)

CS 264/Fall 1999

Richard Fateman 2

10/21/99 5

Why not debug the slow code, then just turn
on the optimizer?

This guy is wearing a life vest. He’s debugging.

10/21/99 6

Then he optimized his code. note: no life vest

10/21/99 7

What happens when you “optimize” code?
Even if an optimizer is correct, it is likely to make
CORRECT programs run faster. Incorrect programs
may have run “by accident” previously!

Some activities whose results “don’t matter” may not
happen.
Loop-n-times (use-up-some-time) Å ?

Presumably some optimizers actually introduce bugs.
(get a different compiler? Call the 800-number for the
vendor?)

Some optimizations may expose bugs in the hardware.

10/21/99 8

What happens when you try to debug
optimized code?

Copperman’s concern is actually fairly simple:

If you stop execution at a break-point, is the program in
a state that is consistent with some given “position” in
the source code? (What is a position?)

CS 264/Fall 1999

Richard Fateman 3

10/21/99 9

What happens when you try to debug
optimized code?

Option A: forbid examination at such points.

Option B: allow examination, but work harder to make
the evidence useful to the programmer.

Expected behavior: map queries on code from
optimized (reality) to non-optimized (expected)

Truthful: explain the optimizations and the
behavior.

10/21/99 10

Issue 1: We can identify current, noncurrent
variables

Noncurrent: the source and optimized code have
different values for a variable:

The current value has not been computed
(forward code motion)

The next value has already been computed
(backward code motion)

The value is not computed at all (dead code
elimination)

The value has been used but discared (dead
store elimination)

The variable has been eliminated (e.g. induction
variable elimination)

10/21/99 11

We can also compute endangered variables

“Endangered” result:
“breakpoint 1 has been reached at line 339. Variable x
was set at line 327. However, optimization has moved the
assignment to x at line 342 near line 336. The value for x
may reflect one or the other of these assignments.”

In general, path tracing is needed to detect when a
variable is current on one path but not others.

10/21/99 12

How often are vars noncurrent?

Hennessy experimental results: a collection of Pascal
programs 100-200 lines

Av. Size of basic block 9.0
Av number of var refs 1.8
Av number of var assgns 0.5
Percent of blocks with CSE 67%
Percent of blocks with CSEs
with noncurrent CSEs 20%
Percent of noncurrent vars
that are recoverable 58%

CS 264/Fall 1999

Richard Fateman 4

10/21/99 13

Issue 2: Aliased pointer assignments can play
havoc with expectations

Certain patterns can be analyzed, but in general,
Copperman seems to punt on this one.

10/21/99 14

Costs of currency determination

Copperman seems to punt on this one too.
A more illuminating discussion is in
/papers/copperman2.pdf

10/21/99 15

Tice’s “OPTVIEW” approach

(papers/tice.pdf)

1. Modify the source program so it is still
recognizable but reflects some of the optimization

2. Map between the binary and this new source

10/21/99 16

Requirements:

1. User must plausibly understand new code
A. Reverse engineering not a solution
B. Comments may be inserted
C. Still compilable after modification

2. Close enough to the binary to be helpful

CS 264/Fall 1999

Richard Fateman 5

10/21/99 17

Supported optimizations

Common subexpression elimination
Code motion
Coarse-grained instruction scheduling
Partial redundancy elimination
Copy propagation
Dead code elimination

10/21/99 18

Techniques for rewriting code

Splitting statements

for (current = list;
current;
current = current -> next) { …}

becomes

current = list;
while (current) {…; current=current->next;}

10/21/99 19

Techniques for rewriting code

Inserting common sub-expressions

C=2*y+3;
A=5+2*y

becomes

Cse_1=2*y
C=cse_1+3;
A=5+cse_1

10/21/99 20

Techniques for rewriting code

Partial redundancy elimination

if (…) { a=x; y=a+b;} else {a=y;}
z=a+b;

becomes
if (…) { a=x; cse_var2=a+b; y=cse_var2;}

else {a=y; cse_var2=a+b}
z=cse_var2;

CS 264/Fall 1999

Richard Fateman 6

10/21/99 21

Key instructions / semantic breakpoints

Could use “first” instruction.
Tice attempts to determine the single low-level

instruction that most closely matches the
semantics associated with a given statement type.

Store: the write to memory (or register?)
If: the test
Call: the “jump”

Approach: track a statement thro ugh the intermediate
representation (where a key is determined) to the
assembly la nguage level

10/21/99 22

Other issues in debugging

User interface (why not graphical)
Systematic framework (needs cooperation with

compiler; can it be made “table driven” or “rule
driven”.)

(see Tice/Graham paper)

10/21/99 23

Timing/ Profiling

Deterministic counting
Statistical sampling based on program counter, stack contents

Criterion: Minimum interference for data collection

Presentation of timing results on a per-statement basis
Presentation of timing results on a per-subroutine basis

(gprof, other tools)

