
Comments on
Integration Applications: the

Next Frontier in Programming

Scriptics Corporation • 2593 Coast Avenue • Mountain View, CA 94043 • 650-210-0100

http://www.scriptics.com

John Ousterhout

fateman:

My comments are
in italics

June 9, 1999, slide 2Comments…USENIX Conference

Introduction

◆ Fundamental shift in software: integration
applications

◆ Traditional system programming languages don’t
work well

◆ Scripting languages evolving to fill this need

◆ Time to question key assumptions about
programming:
– Strong typing
– Error handling

Programming systems should encourage uniformity, not
differentiation

June 9, 1999, slide 3Comments…USENIX Conference

Rise of Integration Applications

The past:

◆ Every application
built from scratch

◆ Little code reuse

Library packages:

◆ Goal: code
reuse

◆ Not often
successful
(InterLisp)

◆ Most code still
written from
scratch

Today, many apps
built from existing
resources:

◆ Devices

◆ Applications

◆ Data sources

◆ Components

◆ Protocols

June 9, 1999, slide 4Comments…USENIX Conference

Comment: Development Model/Lisp

I’m not sure what “Not often successful (InterLisp)”
means. Was Interlisp successful?

There is really a model of environmental / residential
programming that InterLisp as well as the Lisp
machines pushed. The programmer as continual
performer/cook making a large stew by adding (and
subtracting) ingredients. The glue was always there.

The
world

June 9, 1999, slide 5Comments…USENIX Conference

Comment: Development Model/InterLisp

The programmer sat at a display system and edited
programs in the world, tested the world, edited
again.

The file system was used for backup, not as a
primary resource.

Programmers left the system running indefinitely.

[[reproducibility required clever “system dumps”]]

June 9, 1999, slide 6Comments…USENIX Conference

Comment: Development Model/LispM

The programmer sat at a display system and edited
files containing programs using emacs (a version
written entirely in Lisp). tested the world, edited
again.

The file system was used for containing source and
documentation.

Programmers left the system running indefinitely.

June 9, 1999, slide 7Comments…USENIX Conference

Comment: Development model / UNIX

Development in the UNIX environment traditionally
meant building modules connected by pipes:

% progA < file | progB | progC

It isn’t robust. Specifications can’t be met.

June 9, 1999, slide 8Comments…USENIX Conference

Drivers for Integration Applications
◆ Graphical user interfaces:

– Connect controls to each other, application

◆ Web sites:
– Provide remote access to data, legacy applications
– Electronic commerce

◆ Embedded devices

◆ Consolidation:
– Applications within enterprise
– Departments (e.g., in hospitals)
– Mergers and acquisitions

◆ Component frameworks:
– COM, EJB, CORBA,...

June 9, 1999, slide 9Comments…USENIX Conference

Comment: Drivers for Integration
Applications, additional areas

◆ Operating system interactions: UNIX: csh, s/360: JCL
vs Rexx),

◆ Document programming: (active post-its ™)

June 9, 1999, slide 10Comments…USENIX Conference

Integration Applications

◆ Different characteristics as compared to traditional
programming tasks:
– Problem is not algorithms and data structures
– Problem is how to connect, coordinate, customize
– Must support a variety of interfaces, protocols, formats
– Often involves automating business processes
– Requires rapid/unpredictable evolution
– Often involves less sophisticated programmers

◆ Integration applications require a different
programming platform

June 9, 1999, slide 11Comments…USENIX Conference

System Programming Languages
◆ Evolved in 1950’s and 1960’s:

– Alternative was assembler language
– Programs created from scratch
– Efficient machine usage critical

(machine = 20x engineer’s salary)
– Industry reeling from software disasters (e.g., OS/360)

◆ Goals:
– Reduce coding w.r.t. assembler language
– Make software process more manageable
– Retain efficiency of assembler language

◆ Results (Algol, C, Pascal, Java, ...):
– Programs compiled to binary form
– Strong typing

June 9, 1999, slide 12Comments…USENIX Conference

Strong Typing: Maximizing Differences
◆ Must declare properties of

variables, APIs in advance

◆ Compiler enforces usage consistent
with declarations:
– Prevents some run-time errors
– Improves efficiency of compiler

◆ Problem: inflexibility
– Must recompile to handle new APIs

(but apps shipped without sources!)
– Lots of conversion code
– Creates many error conditions

??

June 9, 1999, slide 13Comments…USENIX Conference

Scripting Languages

◆ Examples: Tcl, Perl

◆ Dynamic: interpreted
– Rapid turnaround
– Can modify apps in the field
– Easy to handle unplanned growth

◆ String-oriented/weakly typed:
– Make everything look the same:

strings
– Conversions made automatically
– Easy to connect anything to

anything

June 9, 1999, slide 14Comments…USENIX Conference

An Example
Tcl (1 line):
button .b -text Hello! -font {Times 16} -command {puts hello}

MFC (28 lines):
#include "stdafx.h"
#include "button3.h"
#include "buttonDlg.h"
#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif
+ #define IDC_INIGO 100
CButtonDlg::CButtonDlg(CWnd* pParent /*=NULL*/)

: CDialog(CButtonDlg::IDD, pParent)
{
+ m_pFont = NULL;
+ m_pButton = NULL;

//{{AFX_DATA_INIT(CButtonDlg)
//}}AFX_DATA_INIT

}
BEGIN_MESSAGE_MAP(CButtonDlg, CDialog)

//{{AFX_MSG_MAP(CButtonDlg)
+ ON_BN_CLICKED(IDC_INIGO, OnInigo)

//}}AFX_MSG_MAP
END_MESSAGE_MAP()
BOOL CButtonDlg::OnInitDialog()
{
+ CButton *buttonPtr = new CButton();
+ char *text = ”Hello!";
+ CFont *fontPtr = new CFont;
+ fontPtr->CreateFont(16, 0, 0, 0, 700, 0, 0, 0, ANSI_CHARSET,
+ OUT_DEFAULT_PRECIS, CLIP_DEFAULT_PRECIS, DEFAULT_QUALITY,
+ DEFAULT_PITCH|FF_DONTCARE, "Times New Roman");

+ CDC *dcPtr = GetDC();
+ fontPtr = dcPtr->SelectObject(fontPtr);
+ CSize size = dcPtr->GetTextExtent(text, strlen(text));
+ fontPtr = dcPtr->SelectObject(fontPtr);
+ ReleaseDC(dcPtr);
+ size.cx += 9;
+ size.cy += 9;
+ buttonPtr->Create(text, WS_CHILD | WS_TABSTOP,
+ CRect(0, 0, size.cx, size.cy), this, IDC_INIGO);
+ buttonPtr->SetFont(fontPtr);
buttonPtr->SetWindowPos(NULL, 20, 30, 0, 0,

SWP_NOSIZE | SWP_NOZORDER | SWP_SHOWWINDOW);
+ m_pButton = buttonPtr;
+ m_pFont = fontPtr;

return TRUE;
}
void CButtonDlg::PostNcDestroy()
{
+ delete m_pFont;
+ delete m_pButton;

CDialog::PostNcDestroy();
}
+ void CButtonDlg::OnInigo()
+ {
+ MessageBox("hel lo", "", MB_OK | MB_ICONINFORMATION);
+ }

June 9, 1999, slide 15Comments…USENIX Conference

Just The Font (MFC)

CFont *fontPtr = new CFont();
fontPtr->CreateFont(16, 0, 0, 0, 700, 0,

0, 0, ANSI_CHARSET, OUT_DEFAULT_PRECIS,
CLIP_DEFAULT_PRECIS, DEFAULT_QUALITY,
DEFAULT_PITCH|FF_DONTCARE,
"Times New Roman");

buttonPtr->SetFont(fontPtr);

API requires
particular type

Complex,
rigid API

Declaration required

fateman:

The power of
defaults June 9, 1999, slide 16Comments…USENIX Conference

Real Project Data

Application Implementations Code Effort
Ratio Ratio

Database app. C++ then Tcl 60

System test/install C then Tcl/Perl 47 22

Database library C++ then Tcl 8-12

Security scanner C then Tcl 7

Display oil curves Tcl then C 6

Query dispatcher C then Tcl 2.5 4-8

Spreadsheet tool Tcl then C 4

Simulator and GUI Tcl then Java 2 3-4

fateman:

How could any large project use 47
times as much code?

June 9, 1999, slide 17Comments…USENIX Conference

Concerns About Scripting

◆ Performance:
– Machines 500x faster than in 1980

(machine = 1/20th engineer’s salary)
– Expensive operations happen in underlying

components

◆ Hard to find errors (fewer compile-time checks):
– Better runtime checking than system programming

languages
– Scripting languages “safe”

◆ Hard to maintain code
– Less code to maintain!

June 9, 1999, slide 18Comments…USENIX Conference

Comments: Concerns About Scripting

◆ Performance:
– Expensive operations happen in underlying components(This is a

goal, but is easily circumvented by naïve programmers who write
inefficient loops, searches, extensive arithmetic, bitmap
manipulation… in the S.L.)

◆ Hard to find errors (fewer compile-time checks):
– Better runtime checking than system programming languages (In

fact, a problem with many scripting languages is that many
erroneous constructs are legal, but mean something other than
what was intended else.)

◆ Hard to maintain code
– Less code to maintain! (But modularity, information hiding,

memory allocation, security, may be lacking.)

June 9, 1999, slide 19Comments…USENIX Conference

The Origin Of Tcl
◆ Needed command language for

applications

◆ Goal: reuse one language in many
different applications

◆ Tcl (Tool Command Language):
– Simple interpreted language
– Embeddable
– Extensible

◆ Tcl provides generic
programming facilities

◆ Application provides “interesting”
functions

Tcl

Tcl

Application 1

Application 2

June 9, 1999, slide 20Comments…USENIX Conference

Design Issues For Tcl

◆ Most of the “interesting” stuff is outside Tcl, so Tcl
should have:
– Minimal structure and flavor
– Maximal extensibility: can define new functions, data

types, even control structures
– Simple C APIs for extensions

◆ Result: very simple language

◆ All commands have same basic syntax:
command arg arg …

◆ Tcl parses command, invokes C command procedure
to execute it

June 9, 1999, slide 21Comments…USENIX Conference

Comment: Hypothetical additional
design issues for TCL

◆ Since C is a favored language, cooperation with C rather than
competion against C is a wise move.

◆ Adoption of any existing language that has already lost out to C in
the marketplace, regardless of its merit, would be an error.
– Lisp is mysterious and its advocates like emacs and RMS
– Balancing parentheses and auto-indenting is hard in JHO’s

favorite editor.
– Professional language designers don’t have the right user model

◆ The only way to really control a language design is to own it from
the start.
– JHO is a crackerjack programmer and a smart person with strong

opinions
– And one of the fastest typists I’ve ever seen, though now with

Carpal Tunnel Syndrome…
◆ Result: very simple but perhaps too simple? language

June 9, 1999, slide 22Comments…USENIX Conference

Minimize Differences
◆ Everything is a string:

– Commands
– Arguments
– Variable values
– Command procedures define meaning of their arguments

◆ Simple substitution rules:
set a 23
set b [expr $a+10]
foreach i {2 4 6 8 10} {

puts “$i squared is [expr $i*$i]”
}

◆ Define errors out of existence:
– Reasonable behavior under (almost?) all conditions

June 9, 1999, slide 23Comments…USENIX Conference

Comment: Minimize Differences
◆ Guess: Most people using Tcl have an incorrect model of

it. They don’t realize how important a new-line
character is.
– They think variables have scope and extent.

(“unset”?)

June 9, 1999, slide 24Comments…USENIX Conference

Comment: Minimize Differences
◆ Simple substitution rules?

Set a 23
set b [expr $a+10]
foreach i {2 4 6 8 10} {

puts “$i squared is [expr $i*$i]”
}
Is entirely different from
Set a 23
set b [expr $a+10]
foreach i {2 4 6 8 10}

{ puts “$i squared is [expr $i*$i]”
}

June 9, 1999, slide 25Comments…USENIX Conference

Comment: Minimize Differences
◆ Compare

Set a 23
set b [expr $a+10]
foreach i {2 4 6 8 10} {

puts “$i squared is [expr $i*$i]”

(set ‘a 23)
(set ‘b (+ a 10))
(dolist (i ‘(2 4 6 8 10))

(format t “~s squared is ~s”
i (* i i)))

June 9, 1999, slide 26Comments…USENIX Conference

Comment: Minimize Differences
◆ Compare

What is to be “quoted”?
[a b $a $b] in tcl

(list ‘a ‘b a b) in Lisp (old style)
`(a b ,a ,b) in Lisp (newer style)

June 9, 1999, slide 27Comments…USENIX Conference

Comment: Minimize Differences

◆ Define errors out of existence:
– Is a result Reasonable? This depends on the sophistication

of your world view.

June 9, 1999, slide 28Comments…USENIX Conference

Embedding Tcl

◆ Link Tcl interpreter into
application

◆ Expose application features
as Tcl extensions

◆ Write Tcl scripts to
automate, customize,
extend application

◆ Use Tcl extensions to
integrate with other apps
and protocols

Application

Result: powerful, flexible applications Oracle

Display

DCOM

Web

Tk

Tcl
Interpreter

June 9, 1999, slide 29Comments…USENIX Conference

The Tcl Platform

◆ Create Tcl extensions:
apps, devices, protocols
appear as new Tcl
commands.

◆ Write Tcl scripts to
integrate, extend

◆ Build business rules,
GUIs as Tcl scripts

Result: powerful, programmable
platform for integration, management

Oracle

Sybase

Display

SNMP Web

CORBA

DCOM

TIB

SAP

XML
Test

equipment

SECS
(IC mfg)

Tk
(GUIs)

Extensible,
embeddable
Tcl interpreter

June 9, 1999, slide 30Comments…USENIX Conference

Tcl Today
◆ >500,000 developers worldwide

◆ 40,000 downloads each month (up 6x over 3 years)

◆ Active open source community
– Grass-roots support, moving up the management chain

◆ Thousands of commercial applications:
– Automated testing: Cisco, Motorola, ...
– Web sites: AOL’s Digital City, Vignette, Scriptics, ...
– EDA: Synopsys, Cadence, Mentor, …
– Finance: Merrill Lynch, CSFB, Nations Bank, …
– Media: NBC broadcast control system
– Healthcare: Healtheon, Picker Int’l, ...
– Animation: Pixar, Disney
– Industrial control: Motorola, Shell

June 9, 1999, slide 31Comments…USENIX Conference

Scripting History
◆ All major computing platforms have both language

types:
– System programming languages for creating components
– Scripting languages for integration

1960’s 1970’s 1980’s 1990’s

BAL, PL/1
JCLOS/360:

C, C++
sh, csh, Tcl, Perl ...Unix:

C, C++
VB, Tcl, ...Windows:

June 9, 1999, slide 32Comments…USENIX Conference

Scripting Moving Upscale
◆ Originally, scripting languages used for small applications

◆ Scripting benefits now attracting many new applications:
– Server applications (e.g., Web servers)
– Software products
– Enterprise applications

◆ Scripting languages have improved dramatically over the
years: powerful integration platforms

◆ Integration platform becoming strategic for CIO’s

◆ Key software platforms of the future:
– Operating system
– Database
– Integration platform

June 9, 1999, slide 33Comments…USENIX Conference

Integration Platforms

Essential properties:

◆ Programmability:
– Typeless/string oriented
– Interpreted
– Simple

◆ Connectivity:
– Portable
– Extensible
– Embeddable

June 9, 1999, slide 34Comments…USENIX Conference

Comment: Integration Platforms

Essential properties:

◆ Programmability:
– Typeless/string oriented (Actually, this is hardly

essential. I think JHO means “minimal or no
declarations required”)

– Interpreted (Actually I think JHO means “minimal or
no linker/loader used” and “interactive response”)

– Simple (To understand, to program, to deploy? All?)
◆ Connectivity:

– Portable
– Extensible
– Embeddable

June 9, 1999, slide 35Comments…USENIX Conference

Application Development In The Future

C++, Java

Tcl, Perl, ...

Components,
Base Apps

Integration,
Customization

Expert
Programmers

June 9, 1999, slide 36Comments…USENIX Conference

Comment: Application Development In
The Future

C++, Java

Tcl, Perl, ...

Components,
Base Apps

Integration,
Customization

Expert
Programmers End Users

fateman:

Maybe not

June 9, 1999, slide 37Comments…USENIX Conference

Comment: Application Development/
Science??

C. HPF

Science
components,
libraries

solutions

Computational
Scientists

End Users

p
o
r

Problem solving environments

Problem-dependent
Interpreters, parsers,display

fateman:

Is this different? June 9, 1999, slide 38Comments…USENIX Conference

Comment: Application Development/
Finance??

C. HPF

financial
components,
libraries

solutions

Computational
Scientists

Non-
programmers

p
o
r

Problem solving environments

Problem-dependent
Interpreters, parsers,display

fateman:

Who writes
scripts?

Built by? Using?

June 9, 1999, slide 39Comments…USENIX Conference

Special Opportunities For Scripting

◆ XML:
– Provides data representation
– No functional/operational capability
– Scripting is a good match for XML
– Will be used for data extraction, transformation,

integration

◆ Embedded devices:
– Embedded processors getting faster
– Memories getting larger
– Too hard to program
– Use scripting for customization, application

development, integration

June 9, 1999, slide 40Comments…USENIX Conference

Comment: Sample web page

June 9, 1999, slide 41Comments…USENIX Conference

Comment: Sample web page

June 9, 1999, slide 42Comments…USENIX Conference

Comment: Perl 1

#!/usr/local/bin/perl
Send error messages to the user, not system log
open(STDERR,’<&STDOUT’); $| = 1
require "cgi-lib.pl"; # Get external subroutines
print &PrintHeader;

$script = $ENV{’SCRIPT_NAME’};
$webserver = $ENV{’SERVER_NAME’};

if (! &ReadParse(*input)) { &showform }
else { &readentries }
exit;

This is an example to show how neat it is to use Perl..

June 9, 1999, slide 43Comments…USENIX Conference

Comment: Perl 2
sub showform {

If there is no input data, show the blank form
print <<EOF;
<HTML><HEAD>
<TITLE>Form Example, Part 1</TITLE>
</HEAD><BODY>
<H1>Web Form Example</H1>
<P>(From http://$webserver$script)
<FORM METHOD="POST"

ACTION=$script>
<PRE>
Enter your ID Number: <INPUT NAME=idnum>
Enter your Name: <INPUT NAME=name>
Select favorite Color: <SELECT NAME=color>
<OPTION>red<OPTION>green<OPTION>blue
</SELECT>
</PRE>
To submit the query, press this button:
<INPUT TYPE=submit VALUE="Submit Request">
</FORM>
</BODY></HTML>
EOF
} # End of sub showform #

June 9, 1999, slide 44Comments…USENIX Conference

Comment: Perl 3
sub readentries {

Input data was detected. Echo back to form user.

print <<EOF;
<HTML><HEAD>
<TITLE>Form Example, Part 2</TITLE>
</HEAD><BODY>
<H1>Results of Form</H1>
<P>(From http://$webserver$script)
<P>Your ID Number is $input{’idnum’}, your name is $input{’name’},
and your favorite color is $input{’color’}.
<HR>
[Try again]
EOF
} # end of sub readentries #

June 9, 1999, slide 45Comments…USENIX Conference

Comment: Lisp 0
(publish :url "/hello2"

:content-type "text/html"
:function #’(lambda (req ent)

(with-http-response (req ent)
(with-http-body (req ent)

(html
(:html
(:body "Hello World!")))))))

The function above generates and publishes a URL …./hello2 with body:

<html><body>Hello World!</body></html>.

June 9, 1999, slide 46Comments…USENIX Conference

Comment: Lisp 1
(publish :url "/tformperl" :content-type "text/html“
:function #'(lambda (req ent)

(with-http-response (req ent)
(with-http-body (req ent)

(html (:head (:title "Form Example, Part 1 in Lisp"))
(:body (:h1 "Web Form Example")

"[From http://" (:princ-safe
(header-slot-value req "host"))

"/tformperl]"
((:form :action "/tformperl2":method "post")
(:pre

:br "Enter your ID Number: "
((:input :type "text“ :name "id"))
:br "Enter your name: "
((:input :type "text" :name "name"))
:br "Select your Favorite Color: "
((:select :type "text":name "color")

:option "red" :option "green" :option "blue"))
"To submit the query, press this button:"
((:input :type "submit" :value "Submit Request"

)))))))))

June 9, 1999, slide 47Comments…USENIX Conference

Comment: Lisp 2
(defun inputval(x data)(or (cdr(assoc x data :test #’equal)) ""))

(publish :url "/tformperl2" :content-type "text/html"
:function (let (idnum name color)

#’(lambda (req ent)
(let* ((data (decode-form-urlencoded

(get-request-body req))))
(setf idnum (inputval "id" data)

name (inputval "name" data)
color (inputval "color" data))

(with-http-response (req ent)
(with-http-body (req ent)

(html (:head (:title "Form Example, Part 1 in Lisp"))
(:body (:h1 "Web Form Example")

:p
"Your ID number is " (:princ-safe idnum)
", your name is " (:princ-safe name)
", and your favorite color is " (:princ-safe color)
:hr
"["((:a :href "tformperl" :target "tformperl")

"try again") "]"))
))))))

June 9, 1999, slide 48Comments…USENIX Conference

Conclusions

◆ Fundamental shift in software development:
integration applications

◆ Integration apps need different platform: scripting

◆ New style of programming:
– Minimize differences, special cases
– Strong typing not appropriate
– Define errors out of existence

◆ Challenge to community:
– Bring programming to more people
– Allow more to be done with less code

