
'

&

$

%

CSE 120/130

Introduction to

Programming Languages and Techniques

Fall 2000

Handout 3

Pattern Matching and Sorting

CSE 120 Handout 3 1

'

&

$

%

Patterns

Recall that hd and tl together “undo” the cons :: operation. It often happens that we
want simultaneously to extract, and to give names to, the head and tail of a list.
Suppose, for example, we wanted to “rotate” a list l

let l = [1; 2; 3] ;;

val l : int list = [1; 2; 3]

(tl l) @ (hd l)

- : int list = [2; 3; 1]

We could also write this as

match l with h :: t -> t @ [h] ;;

...

- : int list = [2; 3; 1]

Here the ... stands for a “grumble” that OCaml makes about your code. We’ll ignore it
for the time being and try to understand what is going on.

CSE 120 Handout 3 2

'

&

$

%

match ... with ... ->

match l with h :: t -> t @ [h] ;;

On the right-hand side of the arrow -> we see the “cons” operator, but here it is used as
a pattern which introduces the variables x and y, and binds them respectively to the
head and tail of l. To see why this is a sensible notation look at the list [1; 2; 3]. We
know this is another way of writing 1 :: (2 :: (3 :: [])). So we can understand
the match expression as

match 1 :: (2 :: (3 :: [])) with h :: t -> t @ [h] ;;

Now if we look at what is each side of the with, we see that the two sides have the
same form, and if we “bind” h to 1 and t to (2 :: (3 :: [])) (i.e., [2; 3]) the two
sides are the same.

CSE 120 Handout 3 3

'

&

$

%

Let us look more closely at the “grumble”. Here is a function that uses match to rotate a
list.

let rotate l =

match l with h :: t -> t @ [h] ;;

Warning: this pattern-matching is not exhaustive.

Here is an example of a value that is not matched:

[]

val rotate : 'a list -> 'a list = <fun>

What has happened is that OCaml has observed that not every list matches the pattern
h :: t. The empty list doesn’t match this pattern.

CSE 120 Handout 3 4

'

&

$

%

The solution is to provide an alternative pattern:

let rotate l =

match l with

[] -> []

| h :: t -> t @ [h] ;;

val rotate : 'a list -> 'a list = <fun>

The alternative branch of the pattern match is signalled by the vertical bar |. Note that
this replaces the conditional that we would have otherwise used to write the function
using hd and tl.

CSE 120 Handout 3 5

'

&

$

%

Here is another example of a simple function that can be rewritten using pattern
matching.

let rec repeat l =

if l = [] then []

else hd l :: hd l :: repeat (tl l);;

repeat [1; 2; 3];;

- : int list = [1; 1; 2; 2; 3; 3]

let rec repeat l =

match l with

[] -> []

| h::t -> h :: h :: repeat t;;

In the second implementation we avoid the repeated use of hd l.

CSE 120 Handout 3 6

'

&

$

%

Examples of Pattern Matching

let rec reverse l =

match l with

[] -> []

| h :: t -> reverse t @ [h]

let rec sum l =

match l with

[] -> 0

| h :: t -> h + sum t

What are the types of these functions?

CSE 120 Handout 3 7

'

&

$

%

let rec count l =

match l with

[] -> 0

| _ :: t -> 1 + count t

This illustrates the use of the “wild card” variable _ . In this case we don’t need a name
for the head of l so we just put a place holder which matches anything.

let rec last l =

match l with

[x] -> x

| y -> last (tl y)

In this example we first try to match l with the list containing one element x. We could
also have written this pattern x :: [] .

If the match fails we match l to a variable y (so that y=l).

CSE 120 Handout 3 8

'

&

$

%

Incomplete matches

We could also have written the last function

let rec last l =

match l with

[x] -> x

| _ :: t -> last t

Warning: this pattern-matching is not exhaustive.

Here is an example of a value that is not matched:

[]

val last : 'a list -> 'a = <fun>

The “grumble” is quite useful. It has told us that the patterns covers all possible values
of l, and that there are some inputs on which the function may fail.

The function will work on lists that have at least one element. What happens on empty
lists?

last [];;

Uncaught exception: Match_failure...

CSE 120 Handout 3 9

'

&

$

%

Probably the best way to write this function is with a three-way match

let rec last l =

match l with

[] -> (* generate informative error *)

| [x] -> x

| _ :: t -> last t;;

We’ll learn how to generate an “informative error” later.

CSE 120 Handout 3 10

'

&

$

%

More complicated examples of pattern matching

Here is a function to test whether a list of integers is sorted.

let rec sorted l =

match l with

[] -> true

| [_] -> true

| h1 :: h2 :: t -> h1 <= h2 && sorted (h2 :: t)

The first line of the match expression says the empty list is sorted. The second line
matches lists of length 1. It says that these are also sorted. The third line matches
successive heads of the argument when it has two or more elements.

We could equivalently have written the second line of the match as:

| _ :: [] = true

CSE 120 Handout 3 11

'

&

$

%

The order of pattern matching

Here is another implementation of the null predicate:

let null l =

match l with

[] -> true

| _ -> false

The second pattern matches any argument (including nil). OCaml matches the
patterns in the order in which they occur in the function definition.

What would have happened if we had written the following function?

let null l =

match l with

_ -> false

| [] -> true

CSE 120 Handout 3 12

'

&

$

%

Other patterns

Patterns do not have to be list patterns – they can be quite general. For example the
following is a factorial function:

let rec fact n =

match n with

0 -> 1

| n -> n * fact(n-1)

Again, note that the order of patterns in this function is important.

CSE 120 Handout 3 13

'

&

$

%

Tuples

OCaml allows us to form heterogeneous tuples with the notation x1; x2; : : : ; xn.
Examples:

1, 2, 3 ;;

- : int * int * int = 1, 2, 3

2, "cat";;

- : int * string = 2, "cat"

1, ("cat",true), "dog";;

- : int * (string * bool) * string = 1, ("cat", true), "dog"

Unlike lists, tuples cannot be “extended” by adjoining new elements.

CSE 120 Handout 3 14

'

&

$

%

Decomposing tuples

Tuples can be taken apart with pattern matching.

let p = (2, "bats") ;;

val p : int * string = 2, "bats"

match p with (x, _) -> x;;

- : int = 2

match p with (_ , y) -> y;;

- : string = "bats"

2-tuples are often called “pairs”.

CSE 120 Handout 3 15

'

&

$

%

More complex patterns

The basic forms of patterns that we have seen can be mixed together to achieve more
complex effects. The following definitions mix list and tuple patterns:

let rec zip l =

match l with

l1, [] -> []

| [], l2 -> []

| h1::t1, h2::t2 -> (h1,h2) :: zip (t1,t2)

val zip : 'a list * 'b list -> ('a * 'b) list = <fun>

zip ([1; 2; 3], [4; 5; 6]);;

- : (int * int) list = [1, 4; 2, 5; 3, 6]

CSE 120 Handout 3 16

'

&

$

%

let rec unzip l =

match l with

[] -> [], []

| (h1,h2)::t ->

match unzip t with l1,l2 -> h1::l1, h2::l2

val unzip : ('a * 'b) list -> 'a list * 'b list = <fun>

unzip [1,2; 3,4; 5,6; 9,8];;

- : int list * int list = [1; 3; 5; 9], [2; 4; 6; 8]

The function unzip illustrates a number of points we have covered in pattern matching.
It is a good idea to make sure you understand it.

CSE 120 Handout 3 17

'

&

$

%

Why use pattern matching?

It looks as though pattern matching isn’t buying us much and in some cases is making
our programs longer. Why use it?

For many of the programs we have written, it hasn’t helped a great deal, but when we
write more involved programs it may make them more readable.

Also there is an issue of efficiency. Consider the two values of last

let rec last l =

match l with

[x] -> x

| y -> last (tl y);;

let rec last l =

if null (tl l) then hd l

else last(tl l)

In the second version we computed (tl l) twice. Using pattern matching is one way
of avoiding this.

CSE 120 Handout 3 18

'

&

$

%

Sorting lists

Efficient sorting is a major concern in many parts of computer science. In particular,
sorting large files is a major problem for commercial data processing, and sorting lists
is similar in many respects to sorting files.

To sort a list we can use what should now be a familiar strategy: thinking recursively.
Suppose we could sort the tail of a list. To get the whole list sorted, we’d need to insert
the head in its correct position in a list that is already sorted.

CSE 120 Handout 3 19

'

&

$

%

(* insert(x,l) assumes that l is already sorted and inserts x

into l so that the result is still sorted *)

let rec insert x l =

match l with

[] -> [x]

| h::t -> if x <= h then x :: h :: t

else h :: insert x t

val insert : 'a -> 'a list -> 'a list = <fun>

insert 4 [1; 2; 5; 6];;

- : int list = [1; 2; 4; 5; 6]

CSE 120 Handout 3 20

'

&

$

%

To complete the sorting algorithm, we need only apply insert in turn to each element
of the original list:

let rec sort l =

match l with

[] -> []

| h::t -> insert h (sort t)

val sort : 'a list -> 'a list = <fun>

sort [1; 9; 2; 8; 3; 7; 1; 6];;

- : int list = [1; 1; 2; 3; 6; 7; 8; 9]

CSE 120 Handout 3 21

'

&

$

%

Efficiency considerations

The sorting method we have just described is called insertion sort.

Suppose we sort a list that is in decreasing order. How much work is done by sort?
We shall measure the work as the number of calls to insert, including both “top-level”
calls made by sort and recursive calls made by insert.

Calling insert(x; l) on a list l of length m when x is placed at the end of the list
requires m calls to insert.

Therefore calling sort on a list of length n requires

n+ (n- 1) + (n- 2) + : : : 1 = n(n - 1)=2

calls to insert.

How long would sorting 100,000 records take with this method?

CSE 120 Handout 3 22

'

&

$

%

Quicksort

Quicksort is a much more efficient method of sorting. The idea is simply this:

� choose some element x (“at random”) from the list;

� divide the list into three sub-lists: those elements less that x, those elements equal
to x, and those elements greater than x;

� recursively sort the first and third of these; and

� concatenate the three lists together.

CSE 120 Handout 3 23

'

&

$

%

Here are two of the functions that give us the three sublists

let rec lessLst x l =

match l with

[] -> []

| h::t -> if h < x then h :: lessLst x t

else lessLst x t

let rec eqLst x l =

match l with

[] -> []

| h::t -> if h = x then h :: eqLst x t

else eqLst x t

It should be a “no brainer” to define the third.

CSE 120 Handout 3 24

'

&

$

%

Here is the code for quicksort. Notice that we take as our “random” choice, the head of
the list.

let rec quickSort l =

match l with

[] -> []

| [x] -> [x]

| h::t -> quickSort (lessLst h t)

@ h::eqLst h t

@ quickSort (greaterLst h t)

Under what circumstances would the choice of the head as the “random” element be a
very bad idea?

CSE 120 Handout 3 25

'

&

$

%

Quicksort – refining the code

Calling our three functions that split up a list causes three traversals of that list. On ML
lists this is not a serious penalty, but on files stored on external media it is a problem –
one would read the file three times over!

What we need is a function that splits the list into three in one traversal. Here we want
our function to return more than one list, so we pack them together in a 3-tuple as
shown in the following example

split3 5 [1; 9; 2; 7; 3; 8; 2; 5; 6];;

- : int list * int list * int list = [1; 2; 3; 2], [5], [9; 7; 8; 6]

CSE 120 Handout 3 26

'

&

$

%

Here is the code for split3. We use match ... with (s,e,g) -> ... to “inspect” a
3-tuple.

let rec split3 x l =

match l with

[] -> [], [], []

| h::t -> match split3 x t with (s, e, g) ->

if h < x then (h::s, e,g)

else if h = x then s, h::e, g

else s, e, h::g

val split3 : 'a -> 'a list -> 'a list * 'a list * 'a list = <fun>

CSE 120 Handout 3 27

'

&

$

%

Our code for quicksort is now

let rec quickSort l =

match l with

[] -> []

| [x] -> [x]

| h::t ->

match split3 h t with (l, e, g) ->

quickSort l @ h::e @ quickSort g

Assuming that the initial list is in random order, it can be shown that the expected
running time for quicksort is proportional to n log2 n. How long would it now take to sort
100,000 records?

CSE 120 Handout 3 28

'

&

$

%

Mergesort

Suppose we have two lists that are already sorted and in ascending order. Here is a
program merge that combines them into one list in ascending order. This function is
useful in its own right and variations on it are widely used in data processing.

let rec merge p =

match p with

l1, [] -> l1

| [], l2 -> l2

| (h1::t1), (h2::t2) ->

if h1 <= h2 then h1 :: merge (t1, h2::t2)

else h2::merge (h1::t1, t2)

val merge : 'a list * 'a list -> 'a list = <fun>

CSE 120 Handout 3 29

'

&

$

%

An example of an application of mergesort:

merge (["cat"; "dog"], ["bat"; "cow"; "emu"]);;

- : string list = ["bat"; "cat"; "cow"; "dog"; "emu"]

If l1 has length n1 and l2 has length n2, what is the maximum number of comparisons
performed by merge(l1,l2)?

CSE 120 Handout 3 30

'

&

$

%

The next function we need is a function to split a list into two components. It returns a
pair.

let rec split l =

match l with

[] -> [], []

| [x] -> [x], []

| h1 :: h2 :: t ->

match split t with (l1, l2) -> h1::l1, h2 ::l2

val split : 'a list -> 'a list * 'a list = <fun>

split [1; 2; 3; 4; 5; 6];;

- : int list * int list = [1; 3; 5], [2; 4; 6]

CSE 120 Handout 3 31

'

&

$

%

Now we can write the sorting function mergesort. The idea is simple: split the list into
two, recursively mergesort the two halves, and merge the results.

let rec mergesort l =

match l with

[] -> []

| [x] -> [x]

| l -> match split l with (l1, l2) ->

merge(mergesort l1, mergesort l2)

mergesort [1; 2; 3; 4; 6; 0; 9; 7; 8; 5; 6; 4];;

- : int list = [0; 1; 2; 3; 4; 4; 5; 6; 6; 7; 8; 9]

The number of comparisons made by mergesort on a list of length n is, roughly
speaking, proportional to n log2 n.

CSE 120 Handout 3 32

'

&

$

%

Packaging mergesort

let rec mergesort comp l =

match l with

[] -> []

| [x] -> [x]

| l ->

let rec merge p =

match p with

l1, [] -> l1

| [], l2 -> l2

| (h1::t1), (h2::t2) ->

if comp h1 h2 then h1 :: merge(t1, h2::t2)

else h2::merge(h1::t1, t2) in

(continued on next page)

CSE 120 Handout 3 33

'

&

$

%

let rec split l =

match l with

[] -> [], []

| [x] -> [x], []

| h1 :: h2 :: t ->

match split t with (l1, l2) -> h1::l1, h2 ::l2 in

match split l with (l1, l2) ->

merge(mergesort comp l1, mergesort comp l2)

val mergesort : ('a -> 'a -> bool) -> 'a list -> 'a list = <fun>

Not only have we “encapsulated” mergesort here, we have generalized it to work for an
arbitrary comparison function comp.

In this example, several uses of made of the name l. It would have been kinder to the
reader to use different variable names. Be sure you understand which uses are the
same.

CSE 120 Handout 3 34

'

&

$

%

Examples of using mergesort

mergesort (<=) [1; 9; 3; 8; 4; 7; 3] ;;

- : int list = [1; 3; 3; 4; 7; 8; 9]

mergesort (>=) [1; 9; 3; 8; 4; 7; 3] ;;

- : int list = [9; 8; 7; 4; 3; 3; 1]

mergesort (<=) ["Jack"; "havoc"; "Newt"; "Alan"; "cat"];;

- : string list = ["Alan"; "Jack"; "Newt"; "cat"; "havoc"]

let strComp s1 s2 = String.uppercase s1 <= String.uppercase s2 in

mergesort strComp ["Jack"; "havoc"; "Newt"; "Alan"; "cat"] ;;

- : string list = ["Alan"; "cat"; "havoc"; "Jack"; "Newt"]

CSE 120 Handout 3 35

'

&

$

%

Bottom-up mergesort

An alternative version of mergesort – which is more closely related to how mergesort is
actually performed in secondary storage – is the following.

� Split the list into a list of single element lists. Each of these is trivially sorted.

� Repeatedly sweep through this list of lists merging successive pairs.

� When the list of lists has length 1, extract the single (sorted) list from it.

CSE 120 Handout 3 36

'

&

$

%

Bottom-up mergesort – a hand-worked trace

let ll = singlist [1; 2; 3; 4; 6; 0; 9; 7; 8; 5; 6; 4];;

val ll : int list list =

[[1]; [2]; [3]; [4]; [6]; [0]; [9]; [7]; [8]; [5]; [6]; [4]]

let ll = sweep ll;;

val ll : int list list =

[[1; 2]; [3; 4]; [0; 6]; [7; 9]; [5; 8]; [4; 6]]

let ll = sweep ll;;

val ll : int list list = [[1; 2; 3; 4]; [0; 6; 7; 9]; [4; 5; 6; 8]]

let ll = sweep ll;;

val ll : int list list = [[0; 1; 2; 3; 4; 6; 7; 9]; [4; 5; 6; 8]]

let ll = sweep ll;;

val ll : int list list = [[0; 1; 2; 3; 4; 4; 5; 6; 6; 7; 8; 9]]

CSE 120 Handout 3 37

