
'

&

$

%

CSE 120/130

Introduction to

Programming Languages and Techniques

Fall 2000

Handout 9

CSE 120 Handout 9 1

'

&

$

%

Inheritance

The main idea of Java’s inheritance mechanism is that a class can be defined by
“extension” from another class. In the example below, Employee is declared as a class
that extends the class Person. Employee will be also called a subclass of Person while
Person would be called the superclass of Employee.

Note: In C++ Employee is called a derived class from the base class Person. Moreover,
in C++ a class can be derived from several classes (multiple inheritance). Java has
simple inheritance.

CSE 120 Handout 9 2



'

&

$

%

class Person {

private int ss_num;

public String name;

public int birth_year;

public Person(int s, String n, int b){

ss_num = s;

name = n;

birth_year = b;

}

public int get_ss(){

return ss_num;

}

public int age(){

return (Year.this_year - birth_year);

}

}

CSE 120 Handout 9 3

'

&

$

%

class Year{

static int this_year = 1999;

}

� We made a class Year to hold the current year. Why?

CSE 120 Handout 9 4



'

&

$

%

Now let us build a subclass Employee

class Employee extends Person{

public int salary; /* an additional data member */

public Employee(int ss, String n, int b, int sl){

super(ss,n,b); /* call constructor of superclass */

salary = sl; /* additional initialization */

}

public boolean is_yuppie(){ /* additional method */

return (age() < 30 && salary > 80000);

}

CSE 120 Handout 9 5

'

&

$

%

We can use the inherited class as follows:

public class Main{

public static void main (String[] args){

Person p = new Person(987654321, "Arthur Dent", 1955);

System.out.println("Person name: " + p.name);

System.out.println("Person ss_num: " + p.get_ss());

Employee e = new Employee(123456789, "R. Rotwang", 1925, 40000);

System.out.println("Employee name: " + e.name);

System.out.println("Employee ss_num: " + e.get_ss());

System.out.println("Employee salary: " + e.salary);

System.out.println("Employee yuppie? " + e.is_yuppie());

}

}

CSE 120 Handout 9 6



'

&

$

%

The public methods and data members of the class Person are inherited by the class
Employee. The ouput is what we would expect. Note the appearance of a boolean
constant.

Person name: Arthur Dent

Person ss_num: 987654321

Employee name: R. Rotwang

Employee ss_num: 123456789

Employee salary: 40000

Employee yuppie? false

CSE 120 Handout 9 7

'

&

$

%

� As we mentioned, in Java a class extends exactly one other class. This produces a
tree-shaped inheritance hierarchy. The root of this hierarchy is the class Object. If
a class is declared without an extends clause then, by default, it is assumed to
extend Object. Suprisingly, the class Object already has a number of methods
which therefore apply to all Java objects.

� While multiple inheritance as in C++ is not possible, a related mechanism is
achieved through interfaces; a class can implement several interfaces.

CSE 120 Handout 9 8



'

&

$

%

Overriding methods (late binding)

What happens when we have methods with the same type (and name) in two classes,
one extending the other? Consider the following example.

class Person {

String name;

String address;

Person(String n, String a) {

name = n;

address = a;

}

void printname(){System.out.println(name);}

void printaddr(){

printname(); /*Call to method in same class */

System.out.println(address);

}

}

CSE 120 Handout 9 9

'

&

$

%

class Lawyer extends Person{

int sentence_length;

Lawyer(String n, String a, int i){

super(n,a); /*Call the constructor of Person */

sentence_length = i;

}

void printname(){

System.out.println(name + ", Esquire");

}

}

CSE 120 Handout 9 10



'

&

$

%

class Knight extends Person{

int waistline;

Knight(String n, String a, int w){

super(n,a);

waistline = w;

}

void printname(){

System.out.println("Sir " + name);

}

}

CSE 120 Handout 9 11

'

&

$

%

Note that printaddr in class Person calls printname in the same class. Now suppose
we call the printaddr method on a Lawyer object. The method printaddr is not
defined in that class, so it calls the printaddr method in Person. But which printname

method gets called? The answer is, for Java, the method in the class of the object – not
the method of the class in which the calling method resides. To check this:

CSE 120 Handout 9 12



'

&

$

%

class Main{

public static void main(String args[]){

Person p =

new Person("E. Bronte", "The Heights\nWuthering");

Lawyer l =

new Lawyer("Howe Dewey Cheatham",

"The Penitentiary\nMudville", 15);

Knight k =

new Knight("Topham Hat", "The Sidings\nKiddie City",56);

p.printaddr();

System.out.println();

l.printaddr();

System.out.println();

k.printaddr();

System.out.println();

}

}

CSE 120 Handout 9 13

'

&

$

%

And this gives the output:

E. Bronte

The Heights

Wuthering

Howe Dewey Cheatham, Esquire

The Penitentiary

Mudville

Sir Topham Hat

The Sidings

Kiddie City

CSE 120 Handout 9 14


