
'

&

$

%

CSE 120/130

Introduction to

Programming Languages and Techniques

Fall 2000

Handout 5

Evaluation

CSE 120 Handout 5 1

'

&

$

%

A question about evaluation

Consider the functions

let f x = x + 3

let g y = y + 3

Is there any difference between f and g? They differ only in the name of the argument
variable. It seems clear that the particular name given to an argument does not make a
difference in the “meaning” of the function.

Question: Are there cases in which the particular name used for an argument actually
does make a difference in the meaning of a function?

CSE 120 Handout 5 2

'

&

$

%

Answer: Yes, if there are free variables in a function definition and we use a different
evaluation scheme than the one used in OCAML. Consider:

let x = 3

let foo y = x

let bar x = foo 10

bar 5

In OCAML, this evaluates to 3, since foo gets the value of x from the environment in
which foo is defined. This is called STATIC binding, and we’ve talked about it a lot,
although not under that name.

CSE 120 Handout 5 3

'

&

$

%

An alternative to STATIC binding is DYNAMIC binding, in which the free variables in a
function get their values from the environment in which the function is evaluated, not
where it is defined. If OCAML has dynamic binding (remember, it doesn’t), then

let x = 3

let foo y = x

let bar x = foo 10

bar 5

evaluates to 5. When bar 5 is evaluated, x is set to 5. Then, when foo 10 is evaluated,
it returns the value of x in the evaluation environment, namely 5.

CSE 120 Handout 5 4

'

&

$

%

An answer to the question about argument names: Suppose that instead of

let x = 3

let foo y = x

let bar x = foo 10

bar 5

we change the definition of bar to use z instead of x.

let x = 3

let foo y = x

let bar z = foo 10

bar 5

Under static binding, this evaluates to 3, just as before. But with dynamic binding, it
would now also evaluate to 3, whereas before it evaluated to 5 under dynamic binding.
So here is a case in which the name used for an argument can affect the evaluation of
an expression.

THIS IS NOT GOOD - It makes it very hard to determine whether programs will do
what we want them to do, not an easy task to begin with.

CSE 120 Handout 5 5

'

&

$

%

Static and dynamic binding - summary

dynamic binding - a function is evaluated in the environment in which it is evaluated.

static binding - a function is evaluated in the environment in which it is defined.

Crucial point: For static binding, it is not sufficient to identify value of a function
definition with just the arguments and body of the function. The value instead consists
of the arguments and body of the function, together with environment in which the
function was defined. This text-environment pair is called a CLOSURE.

(Most languages use static, not dynamic, binding.)

CSE 120 Handout 5 6

'

&

$

%

A more careful look at evaluation

We are now going to take a more precise look at what happens when expressions are
evaluated in ML, not just for functions as just discussed, but for all expression in ML.

To get a more precise picture of how this works, we’ll proceed in two steps:

� define the syntax of a simplified fragment of ML, omitting most features of the full
language (e.g., most base types and built-in functions, lists, tuples, datatypes,
pattern matching, exceptions, top-level definitions, etc.) in order to emphasize the
most fundamental ones;

� define an evaluation semantics for this language by giving a collection of rules
specifying how to evaluate each form of expression in a given environment.

CSE 120 Handout 5 7

'

&

$

%

Core ML

An expression in Core ML can have any of the following forms:
� an integer constant 0, 1, 2, etc.

� a boolean constant true or false

� a variable x

� an arithmetic expression e1+e2, e1-e2, or e1*e2, where e1 and e2 are expressions

� a boolean expression e1<e2, where e1 and e2 are expressions

� a conditional expression if e1 then e2 else e3, where e1, e2, and e3 are
expressions

� a value definition expression let x = e1 in e, where x is a variable and e1 and e

are expressions

� a function definition expression let rec f x = e1 in e, where f and x are
variables and e1 and e are expressions (all function definitions in Core ML are
recursive and take a single parameter)

� a function application f(e), where f is a variable and e is an expression

CSE 120 Handout 5 8

'

&

$

%

Evaluation

Recall (from Handout 3) that expressions are always evaluated in some environment
that assigns values to their variables.

If we start ML and make the top-level definition let foo = 3;;, we obtain the
environment

foo ! 3

. . .

where . . . represents the “built in” environment provided by ML.

CSE 120 Handout 5 9

'

&

$

%

Evaluating constants and variables

We can now give a straightforward rule for evaluating each form of expression in Core
ML.

� To evaluate a constant number like 56 in an environment E, we simply yield 56 as
the result (ignoring E).

� Similarly, to evaluate a boolean constant true or false in an environment E, we
yield true or false as the result.

� To evaluate a variable x in an environment E, we look up the (most recent) binding
of x in E and return the associated value.

CSE 120 Handout 5 10

'

&

$

%

Evaluating arithmetic expressions

To evaluate an arithmetic expression e1+e2 in environment E, we do the following:

1. evaluate e1 in E to obtain a value v1

2. evaluate e2 in E to obtain a value v2

3. return v1 + v2 (assuming both v1 and v2 are integers; otherwise raise an error)

CSE 120 Handout 5 11

'

&

$

%

Example

To evaluate the expression x+y in the environment

x ! 7

y ! 6

x ! 5

. . .

we calculate as follows:

1. To evaluate x+y, we must first evaluate x and y

(a) To evaluate x, we look it up in the environment, yielding 7

(b) To evaluate y, we look it up in the environment, yielding 6

2. We now add 7 and 6 to produce 13, which is the result of evaluating the whole
expression x+y

Expressions of the forms e1-e2 and e1*e2 are treated similarly.

CSE 120 Handout 5 12

'

&

$

%

Evaluating boolean expressions

To evaluate a boolean expression e1<e2 in environment E, we do the following:

1. evaluate e1 in E to obtain a value v1

2. evaluate e2 in E to obtain a value v2

3. if v1 < v2, then return true; otherwise return false

CSE 120 Handout 5 13

'

&

$

%

Evaluating conditional expressions

To evaluate a conditional expression “if e1 then e2 else e3” in environment E, we
do the following

1. evaluate e1 in E to obtain a value v1

2. if v1 is the boolean true, then evaluate evaluate e2 in E and return the result

3. otherwise (i.e., if v1 is the boolean false), evaluate e3 in E and return the result

CSE 120 Handout 5 14

'

&

$

%

Evaluating value definitions

To evaluate the let expression

let x = e1 in e

in environment E, we do the following

1. evaluate e1 in E to obtain a value v1

2. augment E with the binding x! v to obtain an environment E1

3. evaluate e in E1

CSE 120 Handout 5 15

'

&

$

%

Example of evaluating let

Suppose the current environment E looks like

foo ! 3

. . .

and we want to evaluate

let x = 4*foo in

x*x + x

We first evaluate 4*foo in E to get 12. Then we create a new environment E1 by
extending E with the binding x! 12:

x ! 12

foo ! 3

. . .

Now we evaluate x*x + x in E1.

(Note that E1 is only used to evaluate x*x + x.)

CSE 120 Handout 5 16

'

&

$

%

Evaluating functions

Recall that a definition of a function has the form:

let rec f x = e1 in

e

The variable x is the parameter to the function and e1 is an expression called the body
of the function, which will usually contain occurrences of the parameter x and the
function f. Also, the expression e will usually make use of f. For example:

let rec f x = x * x in

f(3) + f(4)

We need to explain

� how the definition of f is evaluated so that we can make use of it in e, and

� how applications of f (such as f(3) and f(4)) are evaluated.

CSE 120 Handout 5 17

'

&

$

%

Evaluating function definitions

To evaluate let rec f x = e1 in e in an environment E, we

1. extend E with a binding that associates f with its parameter x and its body e1:

E1 =
f ! hx; e1i

. . .

(We shall refer to this environment—the environment containing the binding of f
and everything below it—as the definition environment of f.)

2. Evaluate e in the environment E1

CSE 120 Handout 5 18

'

&

$

%

Evaluating function applications

We now have to describe how to evaluate an application of f such as f(3+y) in an
environment E. (Note that E may not be just the definition environment of f: other let
bindings may have added more entries since f was defined.)

Here are the rules for evaluating an application f(e) in an environment E.

1. Evaluate e in E to get a value v.

2. Look up f in E to find its binding hx; e1i.

3. Augment the definition environment of f with x! v to get an environment E1

4. Evaluate e1 in E1 and return the result

Note, in step 3, that we augment just the definition environment of f, not the whole
environment E, to form E1. This is crucial!

CSE 120 Handout 5 19

'

&

$

%

Function application – a simple example

Suppose we want to evaluate:

let rec f x = x + x in

f(2+7) + f(5)

We first extend the current environment to get the definition environment of f:

f ! hx; x+xi

. . .

Next we need to evaluate f(2+7) in this environment. We evaluate 2+7 to get 9, extend
the environment with x! 9,

x ! 9

f ! hx; x+xi

. . .

and finish by evaluating x+x—the body of f—in this environment, yielding 18.

CSE 120 Handout 5 20

'

&

$

%

Function evaluation – a more interesting example

Consider the following nested let-expression in Core ML:

let y = 0 in

let rec f x = x + y in

let y = 1 in

f(3)

Note that y is bound, used to define f, and then a new binding for y is created before f

is called. When we evaluate the body of f, the earlier binding of y (to 0) should be
visible.

CSE 120 Handout 5 21

'

&

$

%

Starting at the top we make three extensions to our initial environment to get:

y ! 1

f ! hx; x+yi

y ! 0

. . .

We now evaluate the application f(3). We first evaluate the argument in this
environment. Not much to do here – the result is 3.

Now we extend the definition environment of f by binding the parameter of f to 3.

x ! 3

f ! hx; x+yi

y ! 0

. . .

In this environment, we evaluate the body of f, x+y, yielding 3.

CSE 120 Handout 5 22

'

&

$

%

One more variation

As a more subtle example, consider the evaluation of:

let y = 0 in

let rec f x = x + y in

let y = 1 in

f(3+y)

We construct the same extended environment as before:

y ! 1

f ! hx; x+yi

y ! 0

. . .

Next we evaluate the argument of the application f(3+y) to get 4.

CSE 120 Handout 5 23

'

&

$

%

We then proceed as before, binding the parameter of f to 4 and evaluating the body of
f in the definition environment of f augmented with this binding. That is, we evaluate
x + y in the environment

x ! 4

f ! hx; x+yi

y ! 0

. . .

to get 4.

CSE 120 Handout 5 24

'

&

$

%

Implementing Evaluation

We have now given a careful description, in English, of how any Core ML program can
be evaluated to produce a result. Our task for the remainder of this handout will be to
turn this description into an OCaml program for evaluating Core ML expressions.

This exercise is interesting for several reasons:

� It gives us a completely precise definition of what Core ML programs “mean”

� It sharpens our intuitions about how programs evaluate (in Core ML, full OCaml, or
any other language)

� It introduces several key ideas needed for implementing a full-scale interpreter or
compiler (for any programming language)

CSE 120 Handout 5 25

'

&

$

%

Arithmetic/boolean expressions

To get a feeling for how this is going to work, let’s begin with an even simpler subset of
Core ML containing just the numbers, booleans, and arithmetic and relational
expressions. For the moment, then, an expression can have any of the following forms:

� an integer constant 0, 1, 2, etc.

� a boolean constant true or false

� a binary operation e1+e2, e1-e2, e1*e2, or e1<e2, where e1 and e2 are expressions

(Note that we’ve combined the “arithmetic expressions” and “boolean expressions”
from the earlier definition into one category of “binary operations.”)

CSE 120 Handout 5 26

'

&

$

%

An expression like
(2 + 3) < (4 * (5 - 6))

can be thought of as a tree, where the leaves are constants and the interior nodes are
arithmetic/boolean operators:

<

+ *

2 3 4 -

5 6

CSE 120 Handout 5 27

'

&

$

%

This “tree-structured” view of expressions leads directly to a datatype definition:

type exp =

IntConst of int

| BoolConst of bool

| OpExp of exp * string * exp;;

For example, the expression (2 + 3) < (4 * (5 - 6)) is represented as follows:

let test1 =

OpExp(OpExp(IntConst(2), "+", IntConst(3)),

"<",

OpExp(IntConst(4),

"*",

OpExp(IntConst(5), "-", IntConst(6))));;

CSE 120 Handout 5 28

'

&

$

%

What expression is represented like this?

OpExp(IntConst(1),

"+",

OpExp(OpExp(OpExp(IntConst(2),"-",IntConst(3)),

"*",

IntConst(4)),

"+",

IntConst(5)))

CSE 120 Handout 5 29

'

&

$

%

To evaluate expressions, we also need a datatype for representing the possible results
of evaluation. For the present language of arithmetic/boolean expressions, this
datatype is very simple: the result of evaluation is either a number or a boolean:

type value =

IntVal of int

| BoolVal of bool;;

CSE 120 Handout 5 30

'

&

$

%

The evaluation function eval is now straightforward:

let rec eval e =

match e with

IntConst(i) -> IntVal(i)

| BoolConst(b) -> BoolVal(b)

| OpExp(e1,opname,e2) ->

let v1 = eval e1 in

let v2 = eval e2 in

(match (opname,v1,v2) with

("+",IntVal(i1),IntVal(i2)) -> IntVal(i1+i2)

| ("-",IntVal(i1),IntVal(i2)) -> IntVal(i1-i2)

| ("*",IntVal(i1),IntVal(i2)) -> IntVal(i1*i2)

| ("<",IntVal(i1),IntVal(i2)) -> BoolVal(i1<i2));;

eval (OpExp(IntConst(77),"+",IntConst(88)));;

- : value = IntVal 165

CSE 120 Handout 5 31

'

&

$

%

eval (IntConst(77));;

- : value = IntVal 77

eval test1;;

- : value = BoolVal false

But:

eval (OpExp(IntConst(77), "<", BoolConst(true)));;

Uncaught exception: Match_failure("", 200, 446)

CSE 120 Handout 5 32

'

&

$

%

Instead of allowing the nonexhaustive match of in eval to fail at runtime, it’s better to
define our own exception and raise it explicitly:

exception EvaluationError;;

let rec eval e =

match e with

IntConst(i) -> IntVal(i)

| BoolConst(b) -> BoolVal(b)

| OpExp(e1,opname,e2) ->

let v1 = eval e1 in

let v2 = eval e2 in

(match (opname,v1,v2) with

("+",IntVal(i1),IntVal(i2)) -> IntVal(i1+i2)

| ("-",IntVal(i1),IntVal(i2)) -> IntVal(i1-i2)

| ("*",IntVal(i1),IntVal(i2)) -> IntVal(i1*i2)

| ("<",IntVal(i1),IntVal(i2)) -> BoolVal(i1<i2)

| _ -> raise EvaluationError);;

CSE 120 Handout 5 33

'

&

$

%

Aside: parsing

Obviously, typing long inputs like

let test1 =

OpExp(OpExp(IntConst(2), "+", IntConst(3)),

"<",

OpExp(IntConst(4),

"*",

OpExp(IntConst(5), "-", IntConst(6))));;

would not be particularly convenient if we had a lot of expressions we needed to
evaluate.

In practice, the evaluator would be used in combination with a parser whose job it is to
take ordinary strings and turn them into expressions.

val parse : string -> exp = <fun>

CSE 120 Handout 5 34

'

&

$

%

The parse and eval functions can be used together to express evaluation in a much
more pleasant way:

let evalString(s) = eval(parse(s));;

evalString("(2+3) < (4*(5-6))");;

- : value = BoolVal false

Parsing is a rich and elegant topic with deep mathematical foundations. We do not
have time to do it justice in this course, but you’ll see it in detail if you take a course on
compilers later on.

CSE 120 Handout 5 35

'

&

$

%

Expressions with variables

The expressions of Core ML also include variables. We can add these to our datatype
of expressions like this:

type exp =

IntConst of int

| BoolConst of bool

| OpExp of exp * string * exp

| Var of string;;

For example, the expression x+2 is represented as:

OpExp(Var("x"), "+", IntConst(2));;

CSE 120 Handout 5 36

'

&

$

%

As we saw in the first few slides of this handout, when we consider expressions with
variables, we need to evaluate with respect to an environment that provides values for
the variables that an expression may contain.

[This would be a huge amount easier to explain if we had
defined environment as a list of bindings.]

type environment =

EmptyEnv

| ValBinding of string * value * environment;;

For example, the environment env_xy mapping x to 4 and y to 7...

x ! 4

y ! 7

...is represented like this:

let env_y = ValBinding("y", IntVal(7), EmptyEnv);;

let env_xy = ValBinding("x", IntVal(4), env_y);;

CSE 120 Handout 5 37

'

&

$

%

A simple helper function allows us to look up a variable in an environment:

exception UnboundVariable;;

let rec lookup env x =

match env with

EmptyEnv -> raise UnboundVariable

| ValBinding (y,v,rest) ->

if x=y then v

else lookup rest x;;

CSE 120 Handout 5 38

'

&

$

%

The evaluator is now extended to deal with variables as follows:

let rec eval env e =

match e with

IntConst(i) -> IntVal(i)

| BoolConst(b) -> BoolVal(b)

| OpExp(e1,opname,e2) ->

let v1 = eval env e1 in

let v2 = eval env e2 in

(match (opname,v1,v2) with

("+",IntVal(i1),IntVal(i2)) -> IntVal(i1+i2)

| ("-",IntVal(i1),IntVal(i2)) -> IntVal(i1-i2)

| ("*",IntVal(i1),IntVal(i2)) -> IntVal(i1*i2)

| ("<",IntVal(i1),IntVal(i2)) -> BoolVal(i1<i2)

| _ -> raise EvaluationError)

| Var(x) -> lookup env x;;

eval env_xy (OpExp(Var("x"), "+", IntConst(2)));;

- : value = IntVal 6

CSE 120 Handout 5 39

'

&

$

%

Adding let definitions

Having introduced environments, we have everything we need to deal with Core ML’s
let-definition form.

We extend our datatype of expressions like this:

type exp =

IntConst of int

| BoolConst of bool

| OpExp of exp * string * exp

| Var of string

| LetValExp of string * exp * exp;;

For example,

let a_let_exp =

LetValExp("x",

IntConst(99),

OpExp(Var("x"), "+", IntConst(2)));;

represents the expression let x = 99 in x + 2.

CSE 120 Handout 5 40

'

&

$

%

The extended evaluator is:

let rec eval env e =

match e with

IntConst(i) -> IntVal(i)

| BoolConst(b) -> BoolVal(b)

| OpExp(e1,opname,e2) -> (* as before... *)

| Var(x) -> lookup env x

| LetValExp(x,e1,e2) ->

let v1 = eval env e1 in

let newenv = ValBinding (x, v1, env) in

eval newenv e2;;

For example:

eval env_xy a_let_exp;;

- : value = IntVal 101

CSE 120 Handout 5 41

'

&

$

%

Adding conditionals

The if...then...else... expressions of Core ML are also easy to add:

type exp =

...

| IfExp of exp * exp * exp;;

let rec eval env e =

match e with

...

| IfExp(e1,e2,e3) ->

(match eval env e1 with

BoolVal(true) -> eval env e2

| BoolVal(false) -> eval env e3

| _ -> raise EvaluationError);;

CSE 120 Handout 5 42

'

&

$

%

Adding functions

Our final job is dealing with function definitions (let rec f a = ... in ...) and
applications (f(e)).

The extension to our datatype of expressions is easy. Here is the complete datatype
definition:

type exp =

IntConst of int

| BoolConst of bool

| OpExp of exp * string * exp

| Var of string

| LetValExp of string * exp * exp

| IfExp of exp * exp * exp

| LetRecFunExp of string * string * exp * exp

| AppExp of string * exp;;

CSE 120 Handout 5 43

'

&

$

%

The factorial function in Core ML:

let rec f a = if a < 1 then 1 else a * (f(a-1)) in

f(5)

Represented using the datatype exp:

let factprog =

LetRecFunExp("f", "a",

IfExp(OpExp(Var("a"), "<", IntConst(1)),

IntConst(1),

OpExp(Var("a"),

"*",

AppExp("f",

OpExp(Var("a"), "-", IntConst(1))))),

AppExp("f", IntConst(5)));;

CSE 120 Handout 5 44

'

&

$

%

Environments with function definitions

We saw on slide 18 that function definitions need to be stored in the environment in a
special way:

f ! ha; e1i

x ! 4

y ! 7

We therefore extend the datatype of environments with a new clause for function
bindings:

type environment =

EmptyEnv

| ValBinding of string * value * environment

| RecFunBinding of string * string * exp * environment;;

CSE 120 Handout 5 45

'

&

$

%

A function definition let rec f(a) = e1 in e2 is evaluated by adding a function
binding for f to the environment and evaluating the body e2 in this extended
environment:

let rec eval env e =

match e with

...

| LetValExp(x,e1,e2) ->

let v1 = eval env e1 in

let newenv = ValBinding (x, v1, env) in

eval newenv e2

| ...

| LetRecFunExp(f,a,e1,e2) ->

let newenv = RecFunBinding (f, a, e1, env) in

eval newenv e2;;

Note the similarities and differences between the LetValExp and LetRecFunExp cases.

CSE 120 Handout 5 46

'

&

$

%

Application

Recall from slide 19 the rule for evaluating an application f(e) in an environment env
(rephrased slightly here):

1. Evaluate e in env to get a value v.

2. Look up f in env to find

(a) the name a of its bound variable

(b) its body e1

(c) its definition environement defenv

3. Augment f’s definition environment defenv with a!v to get an environment newenv

4. Evaluate e1 in newenv and return the result

Note, in the third step, that we augment just the definition environment of f, not the
original environment env, to form newenv.

CSE 120 Handout 5 47

'

&

$

%

Function Values

So, when we look up a variable that is bound to a function in the environment, we need
to return three things: a, e1, and defenv:

let rec lookup env x =

match env with

EmptyEnv -> raise UnboundVariable

| ValBinding (y,v,rest) ->

if x=y then v

else lookup rest x

| RecFunBinding(f,a,e1,rest) ->

if x=f then ???

else lookup rest x;;

The expression that we want to fill in for ??? should have type value (since that is what
the other clause of lookup returns), and it should include a, e1, and env (since env is
the definition environment of f).

CSE 120 Handout 5 48

'

&

$

%

We can accomplish this by extending the datatype of values with a new clause carrying
just this information:

type value =

IntVal of int

| BoolVal of bool

| FunVal of string * exp * environment

A FunVal is a value representing (all the information we need to invoke) a function.
Here is the completed lookup function:

let rec lookup env x =

match env with

EmptyEnv -> raise UnboundVariable

| ValBinding (y,v,rest) ->

if x=y then v

else lookup rest x

| RecFunBinding(f,a,e1,rest) ->

if x=f then FunVal(a,e1,env)

else lookup rest x;;

CSE 120 Handout 5 49

'

&

$

%

Note, in passing, that the datatypes of values and environments are now mutually
recursive: environments bind variables to values, while a FunVal includes a definition
environment.

type value =

IntVal of int

| BoolVal of bool

| FunVal of string * exp * environment

and environment =

EmptyEnv

| ValBinding of string * value * environment

| RecFunBinding of string * string * exp * environment;;

The keyword and introducing the type environment tells OCaml to treat the two
definitions as mutually recursive.

CSE 120 Handout 5 50

'

&

$

%

So, to evaluate an application f(e), we

1. evaluate e, yielding a value v

2. look up f in the current environment, yielding a function value
FunVal(a,e1,defenv)

3. extend defenv with the binding a!v, yielding a new environment newenv

4. evaluate the function body e1 in newenv

CSE 120 Handout 5 51

'

&

$

%

Translating this into OCaml, we obtain:

let rec eval env e =

match e with

...

| LetRecFunExp(f,a,e1,e2) ->

let newenv = RecFunBinding (f, a, e1, env) in

eval newenv e2

| AppExp(f,e) =

let v = eval env e in

(match lookup env f with

FunVal(x,e1,defenv) ->

let newenv = ValBinding (x, v, defenv) in

eval newenv e1

| _ -> raise EvaluationError);;

CSE 120 Handout 5 52

'

&

$

%

For example:

let funprog =

LetRecFunExp("f", "x",

OpExp(Var("x"), "+", Var("x")),

AppExp("f", IntConst(5)));;

eval EmptyEnv funprog;;

- : value = IntVal 10

CSE 120 Handout 5 53

'

&

$

%

let factprog =

LetRecFunExp("f", "x",

IfExp(OpExp(Var("x"), "<", IntConst(1)),

IntConst(1),

OpExp(Var("x"),

"*",

AppExp("f",

OpExp(Var("x"), "-", IntConst(1))))),

AppExp("f", IntConst(5)));;

eval EmptyEnv factprog;;

- : value = IntVal 120

CSE 120 Handout 5 54

'

&

$

%

Function parameters

Functions like mapl and filter take functions as their parameters. Here is a simpler
(and sillier) example: a function thrice that takes a function g as argument, applies it
three times to the constant 5, and returns the result. Let’s see how it evaluates.

let rec thrice g = g(g(g(5))) in

let rec add3 a = a+3 in

thrice(add3)

CSE 120 Handout 5 55

'

&

$

%

This program is represented like this:

let thriceprog =

LetRecFunExp("thrice", "g",

AppExp("g",

AppExp("g",

AppExp("g", IntConst(5)))),

LetRecFunExp("add3", "a",

OpExp(Var("a"), "+", IntConst(3)),

AppExp("thrice", Var("add3"))));;

eval EmptyEnv thriceprog;;

- : value = IntVal 14

Note that, during evaluation, the FunVal corresponding to add3 is built when it is first
looked up (i.e., when Var("add3") is evaluated), not when it is later applied (i.e., when
g is looked up inside of the body of f).

CSE 120 Handout 5 56

