
'

&

$

%

CSE 120/130

Introduction to

Programming Languages and Techniques

Fall 2000

Handout 2

CSE 120 Handout 2 1

'

&

$

%

The Towers of Hanoi problem

B CA

Goal: Transfer the disks from peg A to peg B, using C for “temporary storage,” moving
only one disk at a time and never putting a larger disk on a smaller disk.

CSE 120 Handout 2 2

'

&

$

%

The solution

B CA

(3)

B CA

B CA B CA

(4)

(1) (2)

CSE 120 Handout 2 3

Explanation We have to move n disks (1). Suppose we know how to
move n- 1 disks. Leaving the largest disk at the bottom of A, we move
the top n - 1 to C, using B (2). Next, we move the largest disk to B (3).
Finally we move the n - 1 disks from C, using A, to B where they are
placed on top of the largest one (4).

CSE 120 Handout 2 3-1

'

&

$

%

The program

First a small formatting function. (Recall that ^ is string concatenation.)

let oneMove (s1:string) (s2:string) =

s1 ^ "->" ^ s2 ^ "; ";;

val oneMove : string -> string -> string = <fun>

oneMove "A" "B";;

- : string = "A->B; "

CSE 120 Handout 2 4

'

&

$

%

The recursive function

Returns a string describing the sequence of moves that solves the problem.

let rec toh (numdisks:int)

(fromP:string) (toP:string) (spareP:string) =

if numdisks = 0 then ""

else (toh (numdisks-1) fromP spareP toP) (* (2) *)

^ (oneMove fromP toP) (* (3) *)

^ (toh (numdisks-1) spareP toP fromP) (* (4) *);;

val toh : int -> string -> string -> string -> string = <fun>

(2), (3), and (4) refer to the steps in the solution diagram a couple of slides back.

CSE 120 Handout 2 5

'

&

$

%

An example

toh 4 "A" "B" "C";;

- : string =

"A->C; A->B; C->B; A->C; B->A; B->C; A->C; A->B;

C->B; C->A; B->A; C->B; A->C; A->B; C->B; "

CSE 120 Handout 2 6

'

&

$

%

A digression on syntax

When we write something like square 3 in ML we mean “apply square to 3”.

The general rule is that if x and y are ordinary names or numbers (they are not
operators like +, *, etc.) then x y means “apply the function x to the argument y”.

We can write x(y) if we want, but these parentheses are unnecessary.

Parentheses are needed in cases like square (5 - 1). What would happen if we
omitted them?

If we write x y z, ML’s interpretation of this is that a two-argument function named x is
being applied to the arguments y and z.

Thus square square 3 will produce an error. We need to write square(square 3).

CSE 120 Handout 2 7

'

&

$

%

Real Numbers

Real (or “floating point”) numbers are always written in OCaml using a decimal point.

2.1 *. 3.4;;

- : float = 7.14

1.3 +. 4.7;;

- : float = 6

1.3 -. 4.7;;

- : float = -3.4

Note that the names of the addition, subtraction, and multiplication operators are
different when their arguments are floats rather than ints (they add a “.”).

Inside the computer, real numbers are represented in a completely different way than
integers. The code for adding and multiplying real numbers is also completely different.

CSE 120 Handout 2 8

'

&

$

%

Real operations do not work on integers:

1 +. 2;;

Characters 0-1:

This expression has type int but is here used with type float

And vice versa:

1.2 * 3.4;;

Characters 0-3:

This expression has type float but is here used with type int

There is no built-in operation for adding an integer to a real. To do this we must first
“float” the integer.

float 3 +. 4.5;;

- : float = 7.5

(Note that float is the name of both a function and a type!)

CSE 120 Handout 2 9

'

&

$

%

Note that division behaves differently on reals and integers.

5.0 /. 3.0;;

- : float = 1.66666666667

5 / 3;;

- : int = 1

The integer division operation always returns an integer.

Some real operations have no corresponding operation on integers:

sqrt 10.0;;

- : float = 3.16227766017

And vice versa:

5 mod 3;;

- : int = 2

x mod y operation returns the remainder when x is divided by y. In other words:

x = (x / y) * y + x mod y

CSE 120 Handout 2 10

'

&

$

%

Overloading

Many languages (C, Java, Pascal, Standard ML) provide some form of overloading.
The behavior of a function is determined by the type of its arguments. In C, for
example, we can write 1 + 2, 1 + 2.5, and 1.3 + 2.5. In each case a different
operation is being carried out, as we can see if we translate into OCaml:

C/Java, etc OCaml

1 + 2 1 + 2

1 + 2.5 float(1) +. 2.5

1.3 + 2.5 1.3 +. 2.5

In C/Java the symbol + is said to be overloaded. In Java we can even overload symbols
that we define ourselves.

Overloading is a convenience: it does not fundamentally increase the power of the
language. Its main benefit is that it frees programmers from having to remember
different names for the same operation on different types. Its main cost is that it
increases the complexity of the language.

CSE 120 Handout 2 11

'

&

$

%

Integer vs. Real Arithmetic

Integers in OCaml are represented using a fixed number of bits. This can lead to wrong
results when we calculate with very large numbers.

600000000 + 600000000;;

- : int = -947483648

For reasons of efficiency, OCaml does not tell us about the error here, but just returns
“junk.” (Some languages will detect and report the error, but returning junk is more
common.)

In both OCaml and most other languages we can get round the problem by using real
numbers.

600000000.0 +. 600000000.0;;

- : float = 1200000000

CSE 120 Handout 2 12

'

&

$

%

The Dangers of Real Arithmetic

However, real numbers have their own pitfalls.

Look at this example. (1e15 is “scientific notation” for a 1 followed by 15 zeroes).

1e15 +. 1.0 > 1e15;;

- : bool = true

1e16 +. 1.0 > 1e16;;

- : bool = false

Computers can only represent approximations to real numbers.

When the numbers get too big (or too small) these approximations can lead to errors in
real arithmetic. Almost all programming languages can be made to “go wrong” this way.
Indeed, programming numerical calculations with a high degree of precision is a major
field of applied mathematics and computer science (called “numerical analysis”).

CSE 120 Handout 2 13

'

&

$

%

The Newton-Raphson algorithm for square roots

We can write a program to calculate square roots by using the observation, from
calculus, that if x is an approximation to

p
a, then (x+ a=x)=2 is a better approximation.

(* If x is an approximation to sqrt(a), then

the result of newApprox is a better approximation *)

let newApprox (x:float) (a:float) =

(x +. a/.x) /. 2.0;;

val newApprox : float -> float -> float = <fun>

(* Test whether x is "close enough" to the square root of a *)

let closeEnough (x:float) (a:float) =

(x*.x -. a) < 0.0000001 && -0.0000001 < (x*.x -. a);;

val closeEnough : float -> float -> bool = <fun>

CSE 120 Handout 2 14

This is actually not a great way of testing closeness: it may lead to
non-termination in the case that a is very large. An industrial strength
implementation of the Newton-Raphson algorithm would use a more
sophisticated method.

CSE 120 Handout 2 14-1

'

&

$

%

The Newton-Raphson algorithm – continued

(* Starting from approximation x, get a "close enough"

approximation *)

let rec sqrtAux (x:float) (a:float) =

if closeEnough x a then x

else sqrtAux (newApprox x a) a ;;

val sqrtAux : float -> float -> float = <fun>

(* Calculate square roots, starting with an approximation of 1.0 *)

let sqrt (a:float) = sqrtAux 1.0 a ;;

val sqrt : float -> float = <fun>

CSE 120 Handout 2 15

'

&

$

%

Some results

It’s interesting to see how the sequence of approximations converges. This is the
sequence of approximations generated by sqrt 1024.0

512.5

257.24902439

130.61480157

69.2273240545

42.009585631

33.1924874169

32.021420905

32.0000071648

32.0

Note how quickly the series converges once it gets “close”. Can you think of a faster
way of getting close initially?

CSE 120 Handout 2 16

'

&

$

%

Some more syntax

It is remarkable how much computation we have been able to do using only the idea of
functional/procedural abstraction.

Some of our computations were less readable than we might have liked, because they
repeated the same subexpression more than once. For example, we just saw the
function

let closeEnough (x:float) (a:float) =

(x*.x -. a) < 0.0000001 && -0.0000001 < (x*.x -. a)

which calculates (x*.x -. a) twice.

OCaml has a construct let...in... that allows us to give temporary values to
names.

let closeEnough (x:float) (a:float) =

let d = (x*.x -. a) in

d < 0.0000001 && -0.0000001 < d

CSE 120 Handout 2 17

'

&

$

%

To see that this is a temporary definition (sometimes called a temporary binding), look
at the following behaviors:

let x = 4 in x*x;;

- : int = 16

x*x;;

Characters 0-1:

Unbound value x

let y = 7;;

val y : int = 7

let y = "cow" in y^y;;

- : string = "cowcow"

y;;

- : int = 7

CSE 120 Handout 2 18

'

&

$

%

Hiding names

When defining sqrt, we used a number of other functions that are probably of no
general interest. We can use let...in... to bundle these functions into the definition
of sqrt:

let sqrt(a:float) =

let newApprox (x:float) (a:float) = (x +. a/.x) /. 2.0 in

let closeEnough (x:float) (a:float) =

let d = (x*.x -. a) in

d < 0.0000001 && -0.0000001 < d in

let rec sqrtAux (x:float) (a:float) =

if closeEnough x a then x

else sqrtAux (newApprox x a) a in

sqrtAux 1.0 a;;

(We’ve removed comments to make the structure easier to see.)

CSE 120 Handout 2 19

'

&

$

%

Local scope

Now that we have moved all the auxiliary functions into a region of program text where
the parameter a is defined, we can simplify the functions:

let sqrt (a:float) =

let newApprox (x:float) = (x +. a/.x) /. 2.0 in

let closeEnough (x:float) =

let d = (x*.x -. a) in

d < 0.0000001 && -0.0000001 < d in

let rec sqrtAux (x:float) =

if closeEnough x then x

else sqrtAux (newApprox x) in

sqrtAux 1.0;;

CSE 120 Handout 2 20

'

&

$

%

Lists – a useful data type

Lists provide a flexible and general mechanism for representing sequences of data.
They are provided as a “built in” type in ML and a number of other languages such as
Lisp, Scheme, and Prolog.

An easy way to specify a list in OCaml is as follows:

[1; 3; 2; 5];;

- : int list = [1; 3; 2; 5]

Note the type that ML gives for this list: int list for “integer list” or “list of integers”.

CSE 120 Handout 2 21

'

&

$

%

The type of lists

["cat"; "dog"; "gnu"];;

- : string list = ["cat"; "dog"; "gnu"]

[true; true; false];;

- : bool list = [true; true; false]

[[1; 2]; [2; 3; 4]; [5]];;

- : int list list = [[1; 2]; [2; 3; 4]; [5]]

If we have a type T, we always have a type T list.

CSE 120 Handout 2 22

'

&

$

%

ML lists are homogeneous

OCaml will not allow you to mix types within a list:

[1; 2; "dog"];;

Characters 7-13:

This expression has type string list but is here used with type int list

CSE 120 Handout 2 23

'

&

$

%

Examples of using lists

We use some built-in OCaml operations such as List.rev and @ that respectively
reverse and append lists. These are not the most fundamental operations on lists,
though (we’ll see those shortly).

[1; 2; 3] @ List.rev [1; 2; 3];;

- : int list = [1; 2; 3; 3; 2; 1]

The functions explode and implode convert between strings and lists of characters.
(They are not built in, but are easy to write.)

explode "bomb";;

- : char list = ['b'; 'o'; 'm'; 'b']

implode ['c'; 'o'; 'w'];;

- : string = "cow"

CSE 120 Handout 2 24

'

&

$

%

Note that we are seeing a new type char for the first time.

OCaml distinguishes between strings of size 1 and characters:

'a' = "a";;

Characters 5-8:

This expression has type string but is here used with type char

CSE 120 Handout 2 25

'

&

$

%

Simple examples with lists – continued

let stringRev (s:string) = implode(List.rev(explode s));;

val stringRev : string -> string = <fun>

stringRev "eldoon";;

- : string = "noodle"

let palindrome (s:string) = (s = stringRev s);;

val palindrome : string -> bool = <fun>

palindrome "able was i ere i saw elba";;

- : bool = true

CSE 120 Handout 2 26

'

&

$

%

map: “apply-to-each”

OCaml has a predefined function List.map f l, where f is a function and l is a list,
that produces another list by applying f to each element of l. We’ll soon see how to
define List.map, but for the time being let’s see how it works:

List.map square [1; 3; 5; 9; 2; 21];;

- : int list = [1; 9; 25; 81; 4; 441]

List.map stringRev ["I"; "cannot"; "tell"];;

- : string list = ["I"; "tonnac"; "llet"]

Note the polymorphic (generic) nature of List.map: it works for lists of integers as well
as for lists of strings. With this example we are getting closer to ML’s real power.

CSE 120 Handout 2 27

'

&

$

%

More on map

An interesting feature of List.map is that one of its arguments is itself a function. For
that reason we say that List.map is higher-order.

Here’s another use of List.map. The function Char.uppercase does what its name
suggests.

let upCase (s:string) =

implode(List.map Char.uppercase (explode s));;

val upCase : string -> string = <fun>

upCase("This is an important message");;

- : string = "THIS IS AN IMPORTANT MESSAGE"

The need for higher-order functions arises naturally in programming. They are easy to
define in ML. Some languages do not allow higher-order functions. In Java, as we shall
see, they can only be defined in a round-about way.

CSE 120 Handout 2 28

'

&

$

%

Another useful higher-order function

We will also be able to define the built-in higher-order function List.filter p l that
extracts from l the list those elements that satisfy the predicate p which is a predicate –
a function returning a boolean.

let even (n:int) = (n mod 2) = 0;;

val even : int -> bool = <fun>

List.filter even [1; 2; 3; 4; 5; 6; 7; 8; 9];;

- : int list = [2; 4; 6; 8]

List.filter palindrome ["glengarry"; "glenross"; "glenelg"];;

- : string list = ["glenelg"]

List.filter is also polymorphic.

CSE 120 Handout 2 29

'

&

$

%

Lists – constructing them

We now look at the fundamental operations on lists. As with many data types, these
operations are of two kinds: those that construct lists and those that take them apart.

Lists are constructed using

� [], the empty list, pronounced “nil”.

� An operation :: . x :: l puts the element x onto the beginning of the list l. :: is
pronounced “cons”.

1 :: [2; 3];;

- : int list = [1; 2; 3]

"cat" :: [] ;;

- : string list = ["cat"]

CSE 120 Handout 2 30

'

&

$

%

List constructors

Any list can be built by “consing” its elements together:

-# 1 :: 2 :: 3 :: 2 :: 1 :: [] ;;;

- : int list = [1; 2; 3; 2; 1]

We now see that

[x1; x2; : : : ; xn]

is simply a “shorthand” for

x1 :: x2 :: : : : :: xn :: []

Note that by convention :: associates to the right: 1 :: 2 :: [] is the same as
1 :: (2 :: []).

CSE 120 Handout 2 31

'

&

$

%

Some functions that generate lists

let rec repeat (k:int) (n:int) = (* A list of n copies of k *)

if n = 0 then []

else k :: repeat k (n-1);;

repeat 7 12;;

- : int list = [7; 7; 7; 7; 7; 7; 7; 7; 7; 7; 7; 7]

let rec fromTo (m:int) (n:int) = (* The numbers from m to n *)

if n < m then []

else m :: fromTo (m+1) n;;

fromTo 9 18;;

- : int list = [9; 10; 11; 12; 13; 14; 15; 16; 17; 18]

CSE 120 Handout 2 32

'

&

$

%

Modules – a brief digression

OCaml has things called modules, which have several uses. The property that interests
us here is that they act as namespaces, which are groups of names for various
functions, values etc.

So, for example, the module List contains a number of useful functions like List.map,
List.filter, List.reverse, List.length, etc.

If we are working intensively with lists, typing in these long names can be annoying.
We can make life easier by “opening” a module, e.g.,

#open List;;

After doing this, we can use reverse instead of List.reverse, length instead of
List.length etc.

CSE 120 Handout 2 33

'

&

$

%

So why don’t we simply open all the modules? The problem is that we there will be
“conflicts”, e.g. between String.length and List.length. The last one opened wins.
So if we do

open String;;

open List;;

At this point length means List.length. The length function for strings has
disappeared, though it is still available as String.length. More importantly there are
probably a few hundred identifiers in OCaml modules. If we open all the modules, we
might well “clobber” some code that we have already written.

CSE 120 Handout 2 34

'

&

$

%

Lists – taking them apart

From now on we’ll assume that the list module has been opened with the open List;;

directive. Lists are taken apart with two operations

� hd (pronounced “head”) gives the first element of a list.

hd [1; 2; 3];;

- : int = 1

� tl (pronounced “tail”) gives everything but the first element.

tl [1; 2; 3];;

- : int list = [2; 3]

(Lisp programmers say “car” and “cdr” instead of “head” and “tail”)

CSE 120 Handout 2 35

'

&

$

%

An emptiness test

Finally we need to test whether a list is empty. We’ll see various ways of doing this, but
in OCaml the obvious way is to ask whether it is equal to the empty list: empty.

[4; 3; 2] = [];;

- : bool = false

The emptiness test is so useful that many languages (lisp and other dialects of ML)
have a built in null function, which we can easily define in OCaml id we want.

That’s it. These five fundamental operations on lists: [], ::, hd, tl, and an equality test
suffice to allow programmers to define “all” the others.

CSE 120 Handout 2 36

What “all” means in the last sentence is a foundational question for
Computer Science. Interestingly, this also has a deep connection with
the question whether mathematical reasoning can lead to paradoxes.
Mathematical logicians have developed the theory of computable func-
tions as part of their analysis of the notion of mathematical proof. If
Electronics is the technological progenitor of Computer Science then
Mathematical Logic is its scientific progenitor.

CSE 120 Handout 2 36-1

'

&

$

%

Some examples

� hd (tl (tl [1; 4; 5; 6]))

� hd (hd [[5; 4]; [3; 2]])

� null (1 :: [])

� tl (tl (8 :: 7 :: 6 :: 5 :: 4 :: []))

� Give some values of x; y for which (x :: y) :: z makes sense.

CSE 120 Handout 2 37

'

&

$

%

Recursion on lists

Most useful functions on lists are written using recursion. For example to sum the
numbers in a sequence a mathematican might say

seq-sum(s) = 0 if s is empty

seq-sum(s) = hd(s) + seq-sum(tl(s)) otherwise

We would write

let rec listSum (l:int list) =

if l = [] then 0

else hd l + listSum (tl l);;

listSum [5; 4; 3; 2; 1];;

- : int = 15

Notice how similar this function is to the recursive functions we wrote on integers.

CSE 120 Handout 2 38

'

&

$

%

Recursion on lists – continued

Here are some more examples:

let rec length (l: int list) =

if l = [] then 0

else 1 + length (tl l);;

let rec listProd (l: int list) =

if l = [] then 1

else hd l * listProd (tl l);;

let fact (n:int) = listProd (fromTo 1 n);;

fact 6;;

- : int = 720

CSE 120 Handout 2 39

'

&

$

%

The last element of a list

let rec last l =

if tl l = [] then hd l

else last (tl l);;

last [1; 4; 5; 2; 7];;

- : int = 7

That’s odd! We forgot to give a type for the argument of last, and yet it worked!

CSE 120 Handout 2 40

'

&

$

%

The last element of a list – continued

Moreover last works for lists of other types:

last ["The"; "fat"; "cat"];;

- : string = "cat"

last (last [[1; 4; 4]; [5; 3]]);;

- : int = 3

This is precisely because we “forgot” to give a type to its argument.

Note that last works equally well on integer lists and string lists. What type should we
give to the argument? If we were using C, or even Java, we would be required to
specify the kind of list, e.g. integer list for the argument – in which case the function
wouldn’t work on a string list.

In fact, without a “hack” in C or Java, we have to write a different function for each kind
of list, even though the code is identical.

CSE 120 Handout 2 41

'

&

$

%

Polymorphism

Let’s look at what OCaml prints out when we input the function last:

let rec last l =

if tl l = [] then hd l

else last (tl l);;

val last : 'a list -> 'a = <fun>

OCaml reports that it has found something of type 'a list -> 'a. Here 'a –
pronounced “alpha” – is a type variable. It can be instantiated with any other type. So
some possible types for the function are

int list -> int

string list -> string

int list list -> int list

However the function cannot, for example, be used at type string list -> int.

The ability to use type variables is called (parametric) polymorphism. It is an extremely
powerful feature of languages in the ML family, but not (yet) available in languages such
as Java.

CSE 120 Handout 2 42

'

&

$

%

append

From now on, it will help in your understanding of functions if you look at the types
OCaml infers for them.

let rec append l1 l2 = (* this is a prefix version of @ *)

if l1 = [] then l2

else hd l1 :: append (tl l1) l2;;

val append : 'a list -> 'a list -> 'a list = <fun>

append [4; 3; 2] [6; 6; 7];;

- : int list = [4; 3; 2; 6; 6; 7]

CSE 120 Handout 2 43

'

&

$

%

snoc

let rec snoc l x = (* put x on the end of l *)

if l = [] then x::[]

else hd l :: snoc(tl l) x;;

val snoc : 'a list -> 'a -> 'a list = <fun>

snoc [5; 4; 3; 2] 1;;

- : int list = [5; 4; 3; 2; 1]

Look closely at the types of append and snoc.

CSE 120 Handout 2 44

'

&

$

%

Reversing a list

We can use snoc to reverse a list:

let rec rev l = (* Reverses l -- inefficiently*)

if l = [] then []

else snoc (rev (tl l)) (hd l)

val rev : 'a list -> 'a list = <fun>

rev [1; 2; 3; 3; 4];;

- : int list = [4; 3; 3; 2; 1]

Why is this inefficient? How can we do better?

CSE 120 Handout 2 45

'

&

$

%

Defining map

Recall that map is a function that applies another function to each member of a list – to
produce a list of results.

let rec map f l =

if l = [] then []

else f (hd l) :: map f (tl l)

val map : ('a -> 'b) -> 'a list -> 'b list = <fun>

The type of map is probably even more polymorphic than you expected! The result can
even be a list of elements of a different type:

map String.length ["The"; "quick"; "brown"; "fox"];;

- : int list = [3; 5; 5; 3]

CSE 120 Handout 2 46

'

&

$

%

The first argument of map is a function – itself polymorphic – that takes an 'a (alpha)
and produces a 'b (beta). The second is an 'a list. The result of map is a 'b list.

Note the use of String.length. What would have happened if we had used length

instead?

CSE 120 Handout 2 47

'

&

$

%

Defining filter

let rec filter p l =

if l = [] then []

else if p (hd l) then hd l :: filter p (tl l)

else filter p (tl l)

val filter : ('a -> bool) -> 'a list -> 'a list = <fun>

Again, make sure you understand its type.

CSE 120 Handout 2 48

Note that using just the fundamental operations and recursion we were
able to define also rev and append (a prefix version of the infix @), built-in
operations that we have seen before.
Some exercises:

1. Define implode by recursion on lists. You will need a function
charToString : char -> string that turns a character into a string
of length 1. (By the way, explode has nothing to do with recursion
on lists.)

2. Define by recursion on lists a function that concatenates the strings
in a list, concat : string list -> string.

3. Define implodewithout recursion on lists, instead using map, Char.toString
and concat.

CSE 120 Handout 2 48-1

'

&

$

%

Approaches to Typing

� A strongly typed language prevents programs from accessing private data,
corrupting memory, crashing the machine, etc.

� A weakly typed language does not.

� A statically typed language performs type-consistency checks at when programs
are first entered.

� A dynamically typed language delays these checks until programs are executed.

Weak Strong

Dynamic PERL Lisp, Scheme

Static C, C++ ML, ADA, Java?

?Strictly speaking, Java should be called “mostly static”

CSE 120 Handout 2 49

'

&

$

%

Practice with Types

What are the types of the following functions?

� let f (x:int) = x + 1

� let f x = x + 1

� let f (x:int) = [x]

� let f x = [x]

� let f x = x

� let f x = hd(tl x) :: [1.0]

� let f x = hd(tl x) :: []

� let f x = 1 :: x

� let f x y = x :: y

CSE 120 Handout 2 50

'

&

$

%

� let f x y = x :: []

� let f x = x @ x

� let f x = x :: x

� let f x y z = if x>3 then y else z

� let f x y z = if x>3 then y else [z]

And one more:

let rec f x =

if (tl x) = [] then x

else f (tl x)

CSE 120 Handout 2 51

'

&

$

%

Aside: Polymorphism

The polymorphism in ML that arises from type parameters is an example of generic
programming. (mapl, filter, etc.) Are good examples of generic functions.

Different languages support generic programming in different ways...

� parametric polymorphism allows functions to work uniformly over arguments of
different types.E.g., last : 'a list -> 'a

� ad hoc polymporphism (or overloading) allows an operation to behave in
different ways when applied to arguments of different types. There is no such
polymorphism in OCaml, but most languages allow some overloading (e.g.2+3 and
2.4 +3.6). Java and C++ allow one to extend the overloading of a symbol (e.g.
"dog" + "house"). This form of overloading is a syntactic convenience, but little
more.

� subtype polymporphism allows operations to be defined for collections of types
sharing some common structure

e.g., a feed operation might make sense for values of animal and all its
“refinements”—cow, tiger, moose, etc.

CSE 120 Handout 2 52

'

&

$

%

OCaml supports parametric polymorphism in a very general way, and also supports
subtyping (Though we shall not get to see this aspect of OCaml, its support for
subtyping is what distinguishes it from other dialects of ML.) It does not allow
overloading.

Java provides a subtyping as well as moderately powerful overloading, but no
parametric polymorphism. (Various Java extensions with parametric polymorphism are
under discussion.)

Confusingly, the bare term “polymorphism” is used to refer to parametric polymorphism
in the ML community and for subtype polymorphism in the Java community!

CSE 120 Handout 2 53

'

&

$

%

Environments

Earlier, we described how to evaluate programs “by hand” by a process of substitution.
We are now going to introduce a different (but equivalent) way of thinking about
evaluation, called the environment model of evaluation.

The environment model is closer to the mechanism by which programs are actually
evaluated in a computer.

When we start OCaml, a variety of symbols already have meanings attached to them.
They are mostly functions – like +, *, ::, mod, not, nil, float, etc.

The association between a symbol and its meaning is often called a binding. It is like
an entry in a dictionary. When we start up OCaml, a set of bindings is already defined.
This set of bindings (a kind of dictionary) is called an environment.

CSE 120 Handout 2 54

'

&

$

%

The textbook draws environments as diagrams something like this

float ! code for
oat

.

:: ! code for cons

[] ! representation of nil

In this diagram, we have used teletype font for the actual symbols and italic font to
describe the associated meaning.

CSE 120 Handout 2 55

'

&

$

%

Extending an environment

When we define new symbols (i.e. create new bindings) we extend the enviroment.

For example, if we write let pi = 3.14159 the environment becomes.

pi ! 3.14159

float ! code for
oat

.

:: ! code for cons

[] ! representation of nil

CSE 120 Handout 2 56

'

&

$

%

We may re-define a symbol that was already defined. For example, if we defined

let pi = 3.14159

let float (x) = pi *. x *. x

the environment would look like

float ! new code for
oat

pi ! 3.14159

float ! prede�ned code for
oat

.

:: ! prede�ned code for cons

[] ! prede�ned representation of nil

The old code for float has not gone away, but we search for meanings starting from
the top. So any subsequent use of float in our program refers to the definition on top.

CSE 120 Handout 2 57

'

&

$

%

Understanding let...in...

Look at the following interaction:

let x = 5;;

val x : int = 5

let x = 3*3 in

let y = 4*4 in

x*x + x*y + y*y;;

- : int = 481

x;;

- : int = 5

CSE 120 Handout 2 58

'

&

$

%

Just after the first x was defined, the environment looked like

x ! 5

.

The effect of the let x = ... in let y = ... was to extend the environment to

y ! 16

x ! 9

x ! 5

.

The expression x*x + x*y + y*y after the second in is evaluated in this
environmment.

After this expression the environment reverts to what it was before the let, that is

x ! 5

.

CSE 120 Handout 2 59

'

&

$

%

Recursive functions – a brief review

Try to figure out what the following functions do. Some of them compute things we’ve
already seen.

let rec what lo hi =

if lo = hi then hi

else let mid = (lo + hi)/2 in

what lo mid * what (mid+1) hi

let rec whatnext n =

if n = 0 then 1

else let d = n / 2 in

let m = n mod 2 in

let w = whatnext d in

if m = 1 then 2*w*w else w*w

CSE 120 Handout 2 60

'

&

$

%

let rec whatsit n = (* There are more efficient ways of doing this *)

let rec aux i =

if i = 1 then true

else n mod i <> 0 && aux (i-1)

in aux (n-1)

let rec take n l =

if n = 0 then []

else hd l :: take (n-1) (tl l)

let rec drop n l =

if n=0 then l

else drop (n-1) (tl l)

CSE 120 Handout 2 61

'

&

$

%

Counting Iterations

Consider the function defined by

f(n) = n=2 if n is even

f(n) = 3n+ 1 otherwise

Suppose we repeatedly apply f to a number, how long does it take to get to 1? If we
start at 6, for example, we get the sequence

6; 3; 10; 5; 16; 8; 4; 2; 1

with a total of 8 iterations.

It is conjectured that, from an arbitrary starting point, one always gets to 1. Let us
assume that it does, and let us write a function to compute the number of iterations to
get to one.

If the conjecture is false, we’ll be writing a function that doesn’t terminate.

CSE 120 Handout 2 62

'

&

$

%

It sometimes simplifies the coding of such problems by generalizing them. Here is the
generalization. Suppose f is a function. How many times do we have to apply f to a
starting value v in order to achieve a value which satisfies a predicate p?

Here is some OCaml “pseudo-code” for this problem.

let rec count v =

if p v then 0

else 1 + count(f v)

This pseudo-code is easily turned into working OCaml code by making the functions p

and f parameters of the function count

let rec count p f v =

if p v then 0

else 1 + count p f (f v)

CSE 120 Handout 2 63

'

&

$

%

Now all we have to do is to define the p and f for this specific problem.

let next n = if n mod 2 = 0 then n/2 else 3*n + 1

let isOne n = n = 1

let countA n = count isOne next n

countA 6;;

- : int = 8

countA 10;;

- : int = 6

countA 111;;

- : int = 69

CSE 120 Handout 2 64

