
'

&

$

%

CSE 120/130

Introduction to

Programming Languages and Techniques

Fall 2000

Handout 4

Ordering, New types, Searching

CSE 120 Handout 4 1

'

&

$

%

Case study: Sorting other data structures

Suppose we have a database of information about people:

Last Name First Name Age Phone

Smith Carol 43 555-1234

Upper Beth 31 567-8900

Turner Drew 22 552-4321

Smith Adam 42 555-1234

We can encode this information as a list of 4-tuples:

let db = [

("Smith", "Carol", 43, 5551234); ("Upper", "Beth", 31, 5678900);

("Turner", "Drew", 22, 5524321); ("Smith", "Adam", 42, 5551234)];;

The type of db is (string * string * int * int) list.

CSE 120 Handout 4 2

'

&

$

%

More pattern matching syntax

If you look at some of the previous examples you will see function definitions of the
form

let f p = match p with (x,y) -> ...

OCaml allows you to abbreviate this to

let f (x,y) = ...

Similarly you can write

let (x,y) = ... ;;

or

let (x,y) = ... in ...

However one cannot use let with multiple matching clauses; and if you say

let f (x::y) = ...

you will get a “not exhaustive” error.

CSE 120 Handout 4 3

'

&

$

%

Comparing people

So, for the time being, the only patterns we should use in let ... expressions are
tuple patterns.

let lastname (x , _ , _ , _) = x;;

let firstname (_ , x , _ , _) = x;;

let age (_ , _ , x , _) = x;;

let phone (_ , _ , _ , x) = x;;

let complast p1 p2 = (lastname p1) <= (lastname p2);;

let compfirst p1 p2 = (firstname p1) <= (firstname p2);;

let compage p1 p2 = (age p1) <= (age p2);;

What are the types of these functions?

CSE 120 Handout 4 4

'

&

$

%

Sorting lists of people

Recall our packaged version of top-down mergesort:

let rec mergesort comp l =

match l with

[] -> []

| [x] -> [x]

| l ->

let rec merge l = (* code for merge... *) in

let rec split l =

match l with

[] -> [], []

| [x] -> [x], []

| h1 :: h2 :: t ->

let l1,l2 = split t in

h1::l1, h2 ::l2 in

let l1,l2 = split l in

merge(mergesort comp l1, mergesort comp l2);;

CSE 120 Handout 4 5

'

&

$

%

mergesort complast db;;

- : (string * string * int * int) list =

["Smith", "Carol", 43, 5551234; "Smith", "Adam", 42, 5551234;

"Turner", "Drew", 22, 5524321; "Upper", "Beth", 31, 5678900]

mergesort compfirst db;;

- : (string * string * int * int) list =

["Smith", "Adam", 42, 5551234; "Upper", "Beth", 31, 5678900;

"Smith", "Carol", 43, 5551234; "Turner", "Drew", 22, 5524321]

mergesort compage db;;

- : (string * string * int * int) list =

["Turner", "Drew", 22, 5524321; "Upper", "Beth", 31, 5678900;

"Smith", "Adam", 42, 5551234; "Smith", "Carol", 43, 5551234]

CSE 120 Handout 4 6

'

&

$

%

Sorting on Multiple Keys

Suppose we want to put the database in alphabetical order by both first and last names.

We should be able to accomplish this by...
1. first sorting according to first names, and

2. then sorting according to last names (keeping the ordering of first names).

Smith Carol

Upper Beth

Turner Drew

Smith Adam

)

Smith Adam

Upper Beth

Smith Carol

Turner Drew

)

Smith Adam

Smith Carol

Turner Drew

Upper Beth

In our output we want the list to be sorted primarily on last name, with the first name
only being used to order records with the same last name. The “prime” field is
sometimes called the major key and the secondary field is called the minor key (nothing
musical).

To achieve the required order we sort first on the minor key and then on the major key.

CSE 120 Handout 4 7

'

&

$

%

Will this work?

let alphasort l =

mergesort complast (mergesort compfirst l);;

alphasort db;;

- : (string * string * int * int) list =

["Smith", "Adam", 42, 5551234; "Smith", "Carol", 43, 5551234;

"Turner", "Drew", 22, 5524321; "Upper", "Beth", 31, 5678900]

This looks good so far, but...

CSE 120 Handout 4 8

'

&

$

%

let db1 = [

("X", "A", 0, 0);

("X", "B", 0, 0);

("X", "C", 0, 0);

("X", "D", 0, 0);

("Y", "A", 0, 0);

("Y", "B", 0, 0);

("Y", "C", 0, 0);

("Y", "D", 0, 0)];;

alphasort db1;;

- : (string * string * int * int) list =

["X", "A", 0, 0; "X", "C", 0, 0; "X", "B", 0, 0; "X", "D", 0, 0;

"Y", "A", 0, 0; "Y", "C", 0, 0; "Y", "B", 0, 0; "Y", "D", 0, 0]

What happened??

CSE 120 Handout 4 9

'

&

$

%

Stability of Sorting Algorithms

Our implementation of the mergesort algorithm is unstable: records with equal values
of the field we are comparing are not kept in their original order.

The culprit is the split function:

let rec split l =

match l with

[] -> [], []

| [x] -> [x], []

| h1 :: h2 :: t ->

let l1,l2 = split t in h1::l1, h2 :: l2 ;;

split [1; 2; 3; 4; 5; 6];;

- : int list * int list = [1; 3; 5], [2; 4; 6]

split db1;;

["X", "A", 0, 0; "X", "C", 0, 0; "Y", "A", 0, 0; "Y", "C", 0, 0],

["X", "B", 0, 0; "X", "D", 0, 0; "Y", "B", 0, 0; "Y", "D", 0, 0]

CSE 120 Handout 4 10

'

&

$

%

A better split

let rec take n l =

if n = 0 then []

else List.hd l :: take (n-1) (List.tl l);;

let rec drop n l =

if n = 0 then l

else drop (n-1) (List.tl l);;

let rec split l =

let n = (List.length l) / 2 in

(take n l, drop n l);;

split [1; 2; 3; 4; 5; 6];;

- : int list * int list = [1; 2; 3], [4; 5; 6]

CSE 120 Handout 4 11

'

&

$

%

A stable mergesort

Substituting our new split into the definition of mergesort yields a stable algorithm
that can be used to sort on multiple fields:

alphasort db1;;

- : (string * string * int * int) list =

["X", "A", 0, 0; "X", "B", 0, 0; "X", "C", 0, 0; "X", "D", 0, 0;

"Y", "A", 0, 0; "Y", "B", 0, 0; "Y", "C", 0, 0; "Y", "D", 0, 0]

CSE 120 Handout 4 12

'

&

$

%

Lexicographic Ordering

[lexicographic: from lexicography, the art or practice of writing dictionaries—from Greek
lexicon, dictionary—from lexis, word or phrase]

We are all quite familiar with the ordering we use to put words in a dictionary or names
in a telephone directory, but computing that ordering is not trivial.

Consider the words

c a p

c a t

c a t c h

We place cap before cat because, reading from left to right, the letters on which they
first disagree are ordered alphabetically.

We place cat before catch because cat is an initial segment (sometimes called a
prefix) of catch.

Lexicographic ordering is rather subtle. How many character strings are there – in
lexicographic order – between cap and cat?

CSE 120 Handout 4 13

'

&

$

%

An implementation

let rec lexord l1 l2 =

match (l1,l2) with

[], _ -> true (* true when both lists are empty *)

| _, [] -> false

| h1::t1, h2::t2 ->

if h1<= h2 then

if h2 <= h1 then lexord t1 t2 (* in this case h1=h2 *)

else true

else false;;

val lexord : 'a list -> 'a list -> bool = <fun>

Just as <= is a total ordering on any type 'a, lexord is a total ordering on the type
'a list.

CSE 120 Handout 4 14

'

&

$

%

A better implementation

There are some problems with our implementation. In particular, when used on lists of
characters, the ordering is “case sensitive” – it will place Cato before bat.

OCaml has a built-in function Char.uppercase, but it is worth noting that we can write
our own function which is independent of the character coding system used – provided
the uppercase and lowercase characters are represented as consecutive numbers.

let upperCase c =

let v1 = Char.code c - Char.code 'a' in

if v1 >=0 && v1 <= Char.code 'z'

then Char.chr(Char.code 'A'+ v1)

else c;;

let upperComp c1 c2 = upperCase c1 <= upperCase c2;;

CSE 120 Handout 4 15

'

&

$

%

The ASCII character set

| 0 NUL| 1 SOH| 2 STX| 3 ETX| 4 EOT| 5 ENQ| 6 ACK| 7 BEL|

| 8 BS | 9 HT | 10 NL | 11 VT | 12 NP | 13 CR | 14 SO | 15 SI |

| 16 DLE| 17 DC1| 18 DC2| 19 DC3| 20 DC4| 21 NAK| 22 SYN| 23 ETB|

| 24 CAN| 25 EM | 26 SUB| 27 ESC| 28 FS | 29 GS | 30 RS | 31 US |

| 32 SP | 33 ! | 34 " | 35 # | 36 $ | 37 % | 38 & | 39 ' |

| 40 (| 41) | 42 * | 43 + | 44 , | 45 - | 46 . | 47 / |

| 48 0 | 49 1 | 50 2 | 51 3 | 52 4 | 53 5 | 54 6 | 55 7 |

| 56 8 | 57 9 | 58 : | 59 ; | 60 < | 61 = | 62 > | 63 ? |

| 64 @ | 65 A | 66 B | 67 C | 68 D | 69 E | 70 F | 71 G |

| 72 H | 73 I | 74 J | 75 K | 76 L | 77 M | 78 N | 79 O |

| 80 P | 81 Q | 82 R | 83 S | 84 T | 85 U | 86 V | 87 W |

| 88 X | 89 Y | 90 Z | 91 [| 92 \ | 93] | 94 ^ | 95 _ |

| 96 ` | 97 a | 98 b | 99 c |100 d |101 e |102 f |103 g |

|104 h |105 i |106 j |107 k |108 l |109 m |110 n |111 o |

|112 p |113 q |114 r |115 s |116 t |117 u |118 v |119 w |

|120 x |121 y |122 z |123 { |124 | |125 } |126 ~ |127 DEL|

CSE 120 Handout 4 16

'

&

$

%

Generalizing lexord

Our original lexord is too specific. It used the built-in OCaml comparison operation.
We need to change it for our new comparison function, so we might as well generalize
it:

let rec genLexord comp l1 l2 = (* comp must be a total order *)

match (l1,l2) with

[], _ -> true

| _, [] -> false

| h1::t1, h2::t2 ->

if comp h1 h2 then

if comp h2 h1 then genLexord comp t1 t2

else true

else false;;

val genLexord : ('a -> 'a -> bool) -> 'a list -> 'a list -> bool = <fun>

Can you rewrite the conditional using && and ||?

CSE 120 Handout 4 17

'

&

$

%

The completed function

let lexord s1 s2 = genLexord upperComp (explode s1) (explode s2);;

lexord "cat" "cap";;

- : bool = false

lexord "Cato" "bat";;

- : bool = false

Writing a more general lexicographic ordering function has its uses. What does the
following function do?

let whatord l1 l2 = genLexord lexord l1 l2;;

CSE 120 Handout 4 18

'

&

$

%

Bignums

On most present-day computers the size of an integer is limited to what will fit in a
32-bit word, but it’s possible to build arbitrarily large numbers by representing them
exactly as we do when we write them—as a sequence of digits.

We’ll represent a big number as a list of little numbers between 0 and 9. First recall
how one does (or did before calculators) long addition:

61 7 3 4 51 61 7

+ 8 6 4 3 3 9

7 5 9 8 9 0 6

Note that the method starts at the least significant digits. Therefore we’ll represent our
big numbers as lists with the least significant digits first (i.e., leftmost).

To keep things simple, we’ll work only with nonnegative numbers.

CSE 120 Handout 4 19

'

&

$

%

Conversion to bignums

(* Convert int to big *)

let rec toBig n =

if n = 0 then []

else n mod 10 :: toBig (n / 10);;

toBig 35678;;

- : int list = [8; 7; 6; 5; 3]

CSE 120 Handout 4 20

'

&

$

%

Conversion from bignums

let rec fromBig l = (* Convert big to int *)

match l with

[] -> 0

| h::t -> (10 * fromBig t) + h;;

fromBig([8; 7; 6; 5; 3]);;

- : int = 35678

fromBig [8; 7; 6; 5; 3; 8; 7; 6; 5; 3; 8; 7; 6; 5; 3];;

- : int = 634556958

In the last case, the integer arithmetic operations have “overflowed.”

CSE 120 Handout 4 21

'

&

$

%

Formatting Bignums

let rec big2string l =

match l with

[] -> big2string [0]

| l -> let dig2char n = Char.chr(n + Char.code '0')

in implode (List.rev (List.map dig2char l));;

big2string [8; 7; 6; 5; 3; 8; 7; 6; 5; 3; 8; 7; 6; 5; 3];;

- : string = "356783567835678"

Note that we have to reverse the list of characters.

The functions Char.chr: int -> char and Char.code: char ->int map characters
to integers in the range 0..255 and back. A commonly used encoding is ascii—the
A(merican) S(tandard) C(ode) for I(nformation) I(nterchange). However big2string
only assumes that the digits are mapped onto consecutive numbers, so it should work
for other character representations as well.

CSE 120 Handout 4 22

'

&

$

%

The code for long addition

let bigAdd l1 l2 =

let rec aux w =

match w with

(0, l1, []) -> l1

| (c, l1, []) -> aux (0, l1, [c])

| (c, [], l2) -> aux (0, [c], l2)

| (c, h1::t1, h2::t2) ->

let s = c + h1 + h2 in

if s > 9 then (s-10) :: aux(1,t1,t2)

else s :: aux(0,t1,t2) in

aux(0,l1,l2);;

The work is done by the function aux. The parameter c is the “carry” and is 0 or 1.

CSE 120 Handout 4 23

'

&

$

%

Compare

bigAdd [7; 6; 5; 4; 3; 7; 6] [9; 3; 3; 4; 6; 8];;

- : int list = [6; 0; 9; 8; 9; 5; 7]

with
61 7 3 4 51 61 7

8 6 4 3 3 9

7 5 9 8 9 0 6

CSE 120 Handout 4 24

'

&

$

%

Multiplication by a single digit

let digMul d l =

if d = 0 then []

else

let rec aux n ll =

match ll with

[] -> []

| h::t -> let s = n + d * h in

(s mod 10) :: aux (s / 10) t in

aux 0 l;;

The parameter n of aux is the “carry” (in the range 0..9). Note that d is global to aux.

What simple function multiplies a big number by 10?

CSE 120 Handout 4 25

'

&

$

%

Multiplication

Again, this is how we learned to do it in school:

let rec bigMul l1 l2 =

match l1 with

[] -> []

| h::t -> bigAdd (digMul h l2) (0 :: bigMul t l2);;

A test:

big2string (bigMul(toBig 123456) (toBig 123456));;

- : string = "15241383936"

This could not have been computed with Ocaml (or any 32 bit) integer arithmetic.

CSE 120 Handout 4 26

'

&

$

%

Two more useful functions:

let rec eq0 l =

match l with

[] -> true

| 0::t -> eq0 t

| _ -> false;;

Note that initial (i.e. trailing) 0’s are redundant.

Representing negative numbers adds some complexity. Here is a “subtract one”
function that leaves 0 as 0.

let rec sub1 l =

match l with

[] -> []

| (0::t) -> 9::sub1 t

| (h::t) -> (h-1)::t;;

CSE 120 Handout 4 27

'

&

$

%

An example

let rec fact n = if eq0 n then [1] else bigMul n (fact (sub1 n));;

big2string(fact(toBig 256));;

- : string =

"26260659216323446215164912407747281732306847420484525177895709509518219

862585048207964980342231013158405643961335687485652159017651600704641718

027077253381589051963805368410535644077877349603171857212596304352393580

764109120033875361876108888095537724467827994688651766477606506224627798

847263058315128264444591896111286928760429976424778734285041290272833536

000"

CSE 120 Handout 4 28

'

&

$

%

Building New Types

CSE 120 Handout 4 29

'

&

$

%

The need for new types

The ability to construct new types is an essential part of most programming languages.

Suppose we are building a (very simple) graphics program that displays circles and
squares. We can represent each of these with three real numbers.

r

d
(x, y)

(x, y)

CSE 120 Handout 4 30

'

&

$

%

A circle is represented by the co-ordinates of its center and its radius. A square is
represented by the co-ordinates of its bottom left corner and its width. So we can
represent both shapes as elements of the type:

float * float * float

However, there are two problems with using this type to represent circles and squares.
First, it is a bit long and unwieldy, both to write and to read. Second, because their
types are identical, there is nothing to prevent us from mixing circles and squares. For
example, if we write

let areaOfSquare (_,_,d) = d *. d;;

we might accidentally apply the areaOfSquare function to a circle and get a
nonsensical result.

CSE 120 Handout 4 31

'

&

$

%

Data Types

We can improve matters by defining square as a new type:

type square = Square of float * float * float;;

This does two things:

� It creates a new type called square that is different from any other type in the
system.

� It creates a constructor called Square (with a capital S) that can be used to create a
square from three floats. For example:

Square(1.1,2.2,3.3);;

- : square = Square (1.1, 2.2, 3.3)

CSE 120 Handout 4 32

'

&

$

%

Taking data types apart

We take types apart with pattern matching

let areaOfSquare s =

match s with

Square(_, _, d) -> d *. d;;

val areaOfSquare : square -> float = <fun>

let bottomLeftCoords s =

match s with

Square(x, y, _) -> (x,y);;

val bottomLeftCoords : square -> float * float = <fun>

So we can use constructors like Square both as functions and as patterns.

Constructors are recognized by being capitalized (the first letter is upper case).

CSE 120 Handout 4 33

'

&

$

%

These functions can be written a little more concisely by combining the pattern
matching with the function header:

let areaOfSquare (Square(_, _, d)) = d *. d;;

let bottomLeftCoords (Square(x, y, _)) = (x,y);;

Actually, we have seen several instances of this already. Three slides ago, we wrote

let areaOfSquare (_,_,d) = d *. d;;

instead of:

let areaOfSquare z =

match z with

(_,_,d) -> d *. d;;

Similarly,

let (x,y) = (3,4) in x+y;;

is just shorthand for

let z = (3,4) in

match z with

(x,y) -> x+y;;

CSE 120 Handout 4 34

'

&

$

%

Continuing, we can define a data type for circles in the same way.

type circle = Circle of float * float * float;;

let c = Circle (1.0, 2.0, 2.0);;

let areaOfCircle (Circle(_, _, r)) = 3.14159 *. r *. r;;

let centerCoords (Circle(x, y, _)) = (x,y);;

areaOfCircle c;;

- : float = 12.56636

We cannot now apply a function intended for type square to a value of type circle:

areaOfSquare(c);;

This expression has type circle but is here used with type square.

CSE 120 Handout 4 35

'

&

$

%

Variant types

Going back to the idea of a graphics program, we obviously want to have several
shapes on the screen at once. For this we’d probably want to keep a list of circles and
squares, but such a list would be heterogenous. How do we make such a list?

The answer is that we build a type that can be either a circle or a square.

type shape = Circle of float * float * float

| Square of float * float * float;;

Now both constructors Circle and Square create values of type shape. For example:

Square (1.0, 2.0, 3.0);;

- : shape = Square (1, 2, 3)

A type that can have more than one form is often called a variant type.

CSE 120 Handout 4 36

'

&

$

%

We can also write functions that do the right thing on all forms of a variant type. Again
we use pattern matching:

let area s =

match s with

Circle (_, _, r) -> 3.14159 *. r *. r

| Square (_, _, d) -> d *. d;;

area (Circle (0.0, 0.0, 1.5));;

- : float = 7.0685775

CSE 120 Handout 4 37

'

&

$

%

Further examples

A “heterogeneous” list:

let l = [Circle (0.0, 0.0, 1.5); Square (1.0, 2.0, 1.0);

Circle (2.0, 0.0, 1.5); Circle (5.0, 0.0, 2.5)];;

List.map area l;;

- : float list = [7.0685775; 1; 7.0685775; 19.6349375]

A “bounding box” – the smallest enclosing rectangle – is useful in graphics. In our
simplified case the bounding box is always a square:

let boundingBox s =

match s with

Circle (x, y, r) -> Square(x -. r, y -. r, 2.0 *. r)

| s -> s;;

What is the type of boundingBox ?

A challenge: Write a function to determine whether two shapes overlap. (This is very
important in graphics.)

CSE 120 Handout 4 38

'

&

$

%

Mixed-mode Arithmetic

Many programming languages (Lisp, Basic, Perl, database query languages) use
variant types internally to represent numbers that can be either integers or floats. This
amounts to “tagging” each numeric value with an indicator that says what kind of
number it is.

We can represent such a type in OCaml as follows:

type num = Int of int | Float of float;;

let add r1 r2 =

match (r1,r2) with

(Int i1, Int i2) -> Int (i1 + i2)

| (Float r1, Int i2) -> Float (r1 +. float i2)

| (Int i1, Float r2) -> Float (float i1 +. r2)

| (Float r1, Float r2) -> Float (r1 +. r2);;

add (Int 3) (Float 4.5);;

- : num = Float 7.5

CSE 120 Handout 4 39

'

&

$

%

Multiplication, mult follows exactly the same pattern:

let mult r1 r2 =

match (r1,r2) with

(Int i1, Int i2) -> Int (i1 * i2)

| (Float r1, Int i2) -> Float (r1 *. float i2)

| (Int i1, Float r2) -> Float (float i1 *. r2)

| (Float r1, Float r2) -> Float (r1 *. r2);;

CSE 120 Handout 4 40

'

&

$

%

let unaryMinus n =

match n with Int i -> Int (- i) | Float r -> Float (-. r);;

let minus n1 n2 = add n1 (unaryMinus n2);;

let squareRoot n =

match n with

Int i -> Float (sqrt (float i))

| Float r -> Float(sqrt r);;

Challenge: write squareRoot so that it returns an integer when this is a sensible thing
to do.

CSE 120 Handout 4 41

'

&

$

%

let rec fact n =

if n = Int 0 then Int 1

else mult n (fact (minus n (Int 1)));;

fact (Int 7);;

- : num = Int 5040

Does fact work for all inputs of type num?

CSE 120 Handout 4 42

'

&

$

%

An Option Data Type

Suppose we are implementing a simple lookup function for a telephone directory. We
want to give it a string and get back a number (say an integer). We expect to have a
function lookup whose type is

lookup: string -> directory -> int

where directory is a (yet to be decided) type that we’ll use to represent the directory.

However, this isn’t quite enough. What happens if a given string isn’t in the directory?
What should lookup return?

There are several ways to deal with this issue. One general technique is based on the
following data type:

type maybe = Absent | Present of int;;

(Can you think of any other approaches, using only what we already know about
OCaml?)

CSE 120 Handout 4 43

'

&

$

%

To see how this type is used, let’s represent our directory as a list of pairs:

let directory = [("Joe", 1234); ("Martha", 5672);

("Jane", 3456); ("Ed", 7623)];;

let rec lookup s l =

match l with

[] -> Absent

| (k,i)::t -> if k = s then Present(i)

else lookup s t;;

lookup "Jane" directory;;

- : maybe = Present 3456

lookup "Karen" directory;;

- : maybe = Absent

CSE 120 Handout 4 44

'

&

$

%

Enumerations

Our maybe data type has one variant, Absent, that is a “constant” constructor carrying
no data values with it. Data types in which all the variants are constants can actually be
quite useful...

type color = Red | Yellow | Green;;

let next c =

match c with Green -> Yellow | Yellow -> Red | Red -> Green;;

type day = Sunday | Monday | Tuesday | Wednesday

| Thursday | Friday | Saturday;;

let weekend d =

match d with

Saturday -> true

| Sunday -> true

| _ -> false;;

CSE 120 Handout 4 45

'

&

$

%

A Boolean Data Type

A simple data type can be used to replace the built-in booleans.

We use the constant constructors True and False to represent true and false. We’ll
use different names as needed to avoid confusion between our booleans and the
built-in ones:

type myBool = False | True;;

let myNot b = match b with False -> True | True -> False;;

let myAnd b1 b2 =

match (b1,b2) with

(True, True) -> True

| (True, False) -> False

| (False, True) -> False

| (False, False) -> False;;

In what way does the behavior of myAnd differ from &&?

CSE 120 Handout 4 46

'

&

$

%

Binary Search Trees

Search trees come in all shapes and flavors in computer science and are used in a
wide variety of applications. For example, whenever you look something up in a
database, you are almost certainly using a search tree. We will deal with a particularly
simple form, called binary search trees.

Our first application will be representing sets of integers. We have already seen how to
implement sets using lists, but we can build more efficient data structures. (Using a list
representation, how long does it take to determine whether a given integer is in a list?)

Here is the data type for a binary tree:

type tree = Leaf

| Node of (tree * int * tree);;

Each Node has an associated value—in this case an integer—plus “left” and “right”
subtrees. A Leaf has no associated value and no subtrees.

CSE 120 Handout 4 47

'

&

$

%

14

9

7

3 8 19

22

20

17

Nodes: Leaves:

We shall maintain the invariant that the value at each node is greater than any of the
values in its left subtree and less than any of the values in its right subtree. (Observe
that this property holds for every node in the tree shown above.)

CSE 120 Handout 4 48

'

&

$

%

The following sequence of declarations will build this tree:

let n3 = Node(Leaf, 3, Leaf);;

let n7 = Node(Leaf, 7, Leaf);;

let n8 = Node(n7, 8, Leaf);;

let n6 = Node(n3, 6, n8);;

let n12 = Node(Leaf, 12, Leaf);;

let n9 = Node(n6, 9, n12);;

let n19 = Node(Leaf, 19, Leaf);;

let n17 = Node(Leaf, 17, n19);;

let n22 = Node(Leaf, 22, Leaf);;

let n20 = Node(n17, 20, n22);;

let n14 = Node(n9, 14, n20);;

CSE 120 Handout 4 49

'

&

$

%

Functions on Binary Search Trees

The most useful function on trees is one that tests whether a given integer appears
underneath some node:

let rec lookup x n =

match n with

Leaf -> false

| Node(l,v,r) ->

if x = v then true

else if x < v then lookup x l

else lookup x r;;

lookup 3 n14;;

- : bool = true

lookup 2 n14;;

- : bool = false

The ordering is used to cut down the number of nodes that must be inspected.

CSE 120 Handout 4 50

'

&

$

%

1 node

2 nodes

 4 nodes

8 nodes

.
 2 nodes
k

In a full binary search tree of depth k there are 2k+1 - 1 nodes. This means that if we
put n numbers in a tree, and the tree is (roughly) full, it will have depth log2 n.
Therefore, lookup requires log2 n work in this case. Compare this with the cost of the
same function when we use a list representation.

“Roughly full” trees, where no leaf is more than 1 level deeper than any other, are
commonly called balanced.

CSE 120 Handout 4 51

'

&

$

%

Inserting numbers

Insertion into a binary search tree is straightforward. We simply find the leaf where the
number “belongs” and replace it by a new node:

let rec insert x n =

match n with

Leaf -> Node(Leaf,x,Leaf)

| Node(l,v,r) ->

if x = v then

Node(l,v,r) (* already present *)

else if x < v then

Node(insert x l, v, r) (* put in left subtree *)

else

Node(l, v, insert x r) (* put in right subtree *);;

lookup 5 (insert 88 (insert 5 n14));;

- : bool = true

CSE 120 Handout 4 52

'

&

$

%

Deleting from a binary search tree

The deletion operation is trickier. To delete from a tree we search the left or right
subtree as appropriate until we find either a leaf or a node with the value to be deleted.

Now, to delete a node with a leaf subtree we simply return the other subtree. If both
subtrees are not leaves, we need to “merge” the left and right subtrees of this node by
finding some value to serve as the new root (replacing the node we are deleting). One
possibility is the maximum value in the left sub-tree.

19

22

20

17

8 New Node

7

3 8

Delete

9

CSE 120 Handout 4 53

'

&

$

%

Our first function is therefore one to find the maximum value in a tree:

let rec maxVal n =

match n with

Node(_, v, Leaf) -> v

| Node(_, _, r) -> maxVal(r)

maxVal n14;;

- : int = 22

Next a function to delete the maximum value from a tree. This is simpler than the
general deletion problem.

let rec deleteMax n =

match n with

Node(l, v, Leaf) -> l

| Node(l, v, r) -> Node(l, v, deleteMax r)

Why does OCaml “grumble” about these definitions?

Another simple function is a leaf test:

let isLeaf n = match n with Leaf -> true | _ -> false

CSE 120 Handout 4 54

'

&

$

%

Now we can write the deletion function:

let rec delete x n =

match n with

Leaf -> Leaf (* it isn't there !*)

| Node(l,v,r) ->

if x < v then Node(delete x l, v, r) (* first easy case *)

else if x > v then Node(l, v, delete x r) (* second easy case *)

else if isLeaf (l) then r (* v = x -- delete v*)

else Node(deleteMax l, maxVal l, r)

Of course, we might “clean up” our delete function by making maxVal and deleteMax

local to delete

CSE 120 Handout 4 55

'

&

$

%

Maintaining balance

We observed that, for efficiency, we should try to keep our binary search trees
balanced. However neither insert nor delete preserves this property. Consider the
function

let rec listToTree l =

match l with

[] -> Leaf

| x::y -> insert x (listToTree y)

What kind of tree will it build when applied to the list [1; 2; 3; 4; 5; 6; 7; 8]?

One can design more sophisticated algorithms for keeping a binary search tree
balanced. You’ll learn about these in later courses.

CSE 120 Handout 4 56

'

&

$

%

Polymorphic data types

We can parameterize data types by a type variable. One such type is already
well-known to us:

type 'a list = Nil | Cons of 'a * 'a list

With this we can write all the basic functions on lists:

let hd (Cons(x,_)) = x

let tl (Cons(_,y)) = y

What will happen when we evaluate tl(Nil) ?

All that is missing from our lists is the syntactic convenience of having an infix cons

such as :: and a special notation for reading/displaying lists [e1, ..., en].

CSE 120 Handout 4 57

'

&

$

%

The option data type

For convenience, OCaml provides a built-in polymorhic option type:

type 'a option = None | Some of 'a

This is a simple generalizaton of the maybe data type described earlier. Here is another
application...

datatype 'a option = NONE | SOME of 'a

(* find the roots of a*x*x + b*x + c = 0 *)

let roots (a,b,c) =

let v = b *. b -. 4.0 *. a *. c in

if v < 0.0 then None

else let s = sqrt v in

Some((-.b-.s)/.(2.0*.a), (-.b +.s)/.(2.0*.a))

val roots : float * float * float -> (float * float) option = <fun>

CSE 120 Handout 4 58

'

&

$

%

Using a binary search trees as a dictionary

A more general binary tree data type

type ('a,'b) tree =

Leaf

| Node of ('a,'b) tree * ('a * 'b) * ('a,'b) tree

can be used to build dictionaries. First, we define a generic lookup function (we are not
only generalizing the types, but also the comparison function.)

let rec lookup comp x t =

match t with

Leaf -> None

| Node(l,(v,w),r) ->

if comp x v then lookup comp x l

else if comp v x then lookup comp x r

else Some w

val lookup: ('a -> 'a -> bool) -> 'a -> ('a, 'b) tree -> 'b option =<fun>

CSE 120 Handout 4 59

'

&

$

%

To specialize this function to, say, a string to int dictionary, one would write

let stringcomp (s1:string) (s2:string) = s1 <= s2

let find s d = lookup stringcomp s d

Search trees are extremely important in almost all branches of computer science.

An important generalization of the binary search tree is an n-ary search tree. For
example, if n is 30-40 a balanced tree of depth 6 will accommodate 10

9 nodes. What
this means in practice is that we can build enormous dictionaries—such as web
indexes—that require only a few disk accesses to do a lookup.

CSE 120 Handout 4 60

'

&

$

%

Deleting from a binary search tree

The deletion operation is trickier. To delete from a tree we search the left or right
subtree as appropriate until we find either a leaf or a node with the value to be deleted.

Now, to delete a node that has a leaf as an immediate subtree, we can simply return
the other subtree. If both subtrees are not leaves, we need to “merge” the left and right
subtrees of this node by finding some value to serve as the new root (replacing the
node we are deleting). One possibility is the maximum value in the left sub-tree.

19

22

20

17

8 New Node

7

3 8

Delete

9

CSE 120 Handout 4 61

'

&

$

%

The first function we need is one that finds the maximum value in a tree:

let rec maxVal n =

match n with

Node(_, v, Leaf) -> v

| Node(_, _, r) -> maxVal(r);;

maxVal n14;;

- : int = 22

Next, we need a function to delete the maximum value from a tree. (This is simpler
than the general deletion problem.)

let rec deleteMax n =

match n with

Node(l, v, Leaf) -> l

| Node(l, v, r) -> Node(l, v, deleteMax r);;

(Why does OCaml “grumble” about these definitions?)

Another simple function is a leaf test:

let isLeaf n = match n with Leaf -> true | _ -> false;;

CSE 120 Handout 4 62

'

&

$

%

Now we can write the deletion function:

let rec delete x n =

match n with

Leaf -> Leaf (* it isn't there !*)

| Node(l,v,r) ->

if x < v then

Node(delete x l, v, r) (* keep searching to the left *)

else if x > v then

Node(l, v, delete x r) (* keep searching to the right *)

else if isLeaf (l) then

r (* left subtree is a leaf *)

else if isLeaf (r) then

l (* right subtree is a leaf *)

else

(* use max val in left subtree as new node val *)

Node(deleteMax l, maxVal l, r);;

Of course, we might “clean up” our delete function by making maxVal and deleteMax

local to delete.

CSE 120 Handout 4 63

'

&

$

%

Maintaining balance

We observed earlier that, for efficiency, we should try to keep our binary search trees
balanced. However neither insert nor delete preserves this property. Consider the
function

let rec listToTree l =

match l with

[] -> Leaf

| x::y -> insert x (listToTree y);;

What kind of tree will it build when applied to the list [1; 2; 3; 4; 5; 6; 7; 8]?

One can design more sophisticated algorithms for keeping a binary search tree
balanced during insertions and deletions. You’ll learn about these in later courses.

CSE 120 Handout 4 64

'

&

$

%

Search trees play a crucial role in many branches of computer science.

An important generalization of the binary search tree is an n-ary search tree. For
example, if n is 32 a balanced tree of depth 6 will accommodate 109 nodes. What this
means in practice is that we can build enormous dictionaries—such as web
indexes—that require only a few disk accesses to do a lookup.

CSE 120 Handout 4 65

'

&

$

%

Parameterized data types

OCaml allows a data type definition to be “parameterized” by a type variable. One such
type is already well-known to us:

type 'a list = Nil | Cons of 'a * 'a list;;

With this type definition we can re-write all the basic functions on lists. For example:

let hd (Cons(x,_)) = x;;

let tl (Cons(_,y)) = y;;

All that is missing from these lists, compared to the built-in ones, is the syntactic
convenience of having an infix cons such as :: and a special notation for
reading/displaying lists [e1; ...; en].

CSE 120 Handout 4 66

'

&

$

%

Recall that a function definition with a pattern “folded-into” the function header can be
written equivalently as an ordinary function header followed by a match:

let tl l =

match l with (Cons(_,y)) -> y;;

What will happen when we evaluate tl(Nil)?

CSE 120 Handout 4 67

'

&

$

%

The option data type

For convenience, OCaml provides a built-in parametric option type:

type 'a option = None | Some of 'a;;

This is a simple generalizaton of the maybe data type described earlier. Here is another
application...

(* find the roots of a*x*x + b*x + c = 0 *)

let roots (a,b,c) =

let v = b *. b -. 4.0 *. a *. c in

if v < 0.0 then None

else let s = sqrt v in

Some((-.b-.s)/.(2.0*.a), (-.b +.s)/.(2.0*.a));;

val roots : float * float * float -> (float * float) option = <fun>

CSE 120 Handout 4 68

