
'

&

$

%

CSE 120/130

Introduction to

Programming Languages and Techniques

Fall 2000

Handout 6

Lots of information on Java (including links to Sun’s Java pages) can be found at:

http://www.apl.jhu.edu/~hall/java/

CSE 120 Handout 6 1

'

&

$

%

What we’ve seen so far in this course

� Basic techniques for “programming in the small”

� Several important algorithms (sorting and others)

� Fundamental concepts:

� abstraction (“write things only once”)

� recursion (“solve a problem by solving similar, simpler, subproblems”)

� generic programming / polymorphism

� invariants (“properties of a data structure that are preserved by the operations
that manipulate it”)

� organizing and hiding information in programs

� Some common data structures: lists, trees, etc.

� A significant part of one particular programming language (OCaml)

� A careful, formal definition of how the meaning of a program in this language can
be calculated

CSE 120 Handout 6 2

'

&

$

%

Where we’re going

� Larger-scale software engineering issues (“programming in the large”)

There will be much more about this in 121

� Linguistic features supporting large-scale programming

objects, classes, subtyping, ...

� Core features of the Java language

� A better understanding of algorithms and efficiency (mostly in 121)

CSE 120 Handout 6 3

'

&

$

%

Java (at last!)

� a modern object-oriented programming language

� based on many previous languages, especially C++, Mesa, and Modula-3

� superficially similar to C++, but omitting many of its complex and/or dangerous
features and adding a few new ones

� emphasizes (like ML)

� safety

– static typing
– garbage collection

� portability (of both whole programs and tiny “applets” used to enhance web
pages)

CSE 120 Handout 6 4

'

&

$

%

A tiny Java program:

public class test1 {
public static void main (String[] args) {

int x = 2;
int y = x + 3;
System.out.println (y + 4);

}
}

The equivalent program in OCaml:

let x = 2 in
let = x + 3 in
y + 4

Observe:

� The main goal of an ML program is to calculate some value

� The main goal of a Java program is to cause some effect

The java program also includes some mysterious incantations that simply have to be
there. We’ll explain this stuff as we go along, but for now just consider it as “magic.”

CSE 120 Handout 6 5

'

&

$

%

Running java programs

To run our java program, we create a file test1.java containing the text

public class test1 {

public static void main (String[] args) {

int x = 2;

int y = x + 3;

System.out.println (y + 4);

}

}

(Note that the file name is the same as the class name)

We then compile it with the command

/home/bcpierce/CIS/120/JAVA> javac test1.java

This create a file test1.class, which we run with the command

/home/bcpierce/CIS/120/JAVA> java test1

9

CSE 120 Handout 6 6

'

&

$

%

The Java compiler vs. ML’s top-level command loop

Running a Java program is more tedious than interacting with ML’s top level. At least
this is how it appears for small programs.

However, once programs get large, we put them in files in any case, and we organize
them into classes and structures (OCaml) or classes (Java), so the difference between
the two languages starts to even out. We did not cover structures and classes in
OCaml.

The only problem is that Java makes us do all this on day one!

CSE 120 Handout 6 7

'

&

$

%

Basic types and operators

OCaml Java

Built-in types int (123, -99) int (123, -99)

(also byte, short, long)

float float (also double)

bool boolean

string ("ccccc\n") String ("ccccc\n")

char ('c') char ('c')

Arithmetic operators +, -, *, /, +., -., *., /. +, -, *, / (overloaded)

mod %

Comparisons >, >=, <, <= >, >=, <, <=

=, <> ==, !=

Boolean operators &&, ||, not &&, ||, !

CSE 120 Handout 6 8

'

&

$

%

Functions in Java

A basic OCaml function definition:

let rec FUNCTIONNAME (ARGNAME : ARGTYPE) = EXP

A basic Java function definition:

public static RESULTTYPE FUNCTIONNAME (ARGTYPE ARGNAME) {

return EXP;

}

(No distinction between recursive and non-recursive functions in Java)

Java’s terminology for functions is methods.

Points to note:

� Java is explicitly typed (no type inference)

� The result type of a function is always indicated explicitly

CSE 120 Handout 6 9

'

&

$

%

For example, here is the factorial function in Java:

public class test {

public static int fact (int x) {

return (x==0 ? 1 : x*fact(x-1));

}

public static void main (String[] args) {

System.out.println(fact(5));

}

}

Points to note:

� Different syntax for equality test (==, not =)

� Different syntax for conditional (e1 ? e2 : e3, not if e1 then e2 else e3)

� The return keyword

� The printing function System.out.println

CSE 120 Handout 6 10

'

&

$

%

For another example, recall (from Handout 2) Euclid’s algorithm for calculating the
greatest common divisor of two numbers.

In ML:

let rec gcd (x:int) (y:int) =

if x = y then y

else if x > y then gcd(x-y, y)

else gcd(x, y-x)

In Java:

public static int gcd (int x, int y) {

return (x==y

? y

: (x>y ? gcd(x-y,y) : gcd(x,y-x)));

}

CSE 120 Handout 6 11

'

&

$

%

Comments

Comments in Java can be indicated in two ways:

� anything bracketed with /* and */

� end of line prefixed with //

/* The following method defines the GCD

function recursively using Euclid's algorithm */

public static int gcd (int x, int y) {

return (x==y // Are we done?

? x // Yes

: (x>y ? // No: continue with one of

gcd(x-y,y) : // (x-y,y)

gcd(x,y-x))); // (x,y-x)

}

CSE 120 Handout 6 12

'

&

$

%

Local variables

In OCaml:

let rec f x =

let y = x*x in

y*x + 3*y +3*x + 1

In Java:

public static int f(int x) {

int y = x*x;

return (y*x + 3*y + 3*x + 1);

}

CSE 120 Handout 6 13

'

&

$

%

Expressions vs. commands

Java is a “statement oriented” language, while ML uses an “expression oriented”
syntax:

� Not only a whole ML program, but every part of the program, an an expression
whose role is to calculate a value.

� Not only a whole Java program, but also some parts of it, are commands whose
role is to cause some effect.

CSE 120 Handout 6 14

'

&

$

%

Assignment

The simplest and most characteristic command is the assignment statement.

public static int f(int x) {

int y = x * x;

y = y + x;

return (y * x + 3 * y +3 * x + 1);

The statement “y = y+x;” changes the value of y by adding x to it. We never used an
operation like this in ML (though ML does support a similar operation).

Note the confusing use of =. It is used for assignment in Java (and C and C++), and not
as an equality predicate. Assignment is written := in Pascal.

Watch out for the “=” confusion. Even experienced C/Java programmers make it!

CSE 120 Handout 6 15

'

&

$

%

“Functional” vs. “imperative” programming styles

Advantages of functional style:

� often clearer — more declarative presentation of algorithms

� no “side-effects” �! easier to read, maintain, and reason about programs

Advantages of imperative style:

� more efficient (sometimes!): modify data structures in-place instead of rebuilding
them

� sometimes clearer — avoids passing too many parameters to functions that don’t
need them

� the machines we run our programs on operate in an imperative fashion, so we can
get “closer to” the machine

(This doesn’t really apply to Java, but it does to lower-level imperative languages
like C)

Both styles are important in practical programming.

CSE 120 Handout 6 16

'

&

$

%

Other kinds of imperative statements

Many useful functions do not return useful information. For example, calling
System.out.println causes something to happen on your screen. It doesn’t return
useful infomation.

Another useful imperative form is the if statement.

public static void f(int x) {

if (x > 5) {

System.out.println(x); }

}

The general form is if (TEST) { STATEMENTS }. The block of statements gets
evaluated only if the expression evaluates to true. Otherwise nothing happens.

Note that the result type of the function f is void. This is the “nothing” type (like unit in
OCaml). So a call to this function, such as

f(4);

is itself a statement.

CSE 120 Handout 6 17

'

&

$

%

An if statement may have an ELSE branch

public static void f(int x) {

if (x > 5) {

System.out.println(x); }

else {

System.out.println(0); }

}

but this is optional.

Also, if the block of STATEMENTS (in either the THEN or the ELSE branch) contains just a
single statement, Java allows us to drop the enclosing braces:

public static void f(int x) {

if (x > 5) System.out.println(x);

else System.out.println(0);

}

In this class, though, we will always keep the braces, for consistency.

CSE 120 Handout 6 18

'

&

$

%

Sequencing

Along with the idea of a command is the idea that we program by giving sequences of
commands.

public class test2 {

public static void f(int x) {

x = x + 5;

if (x < 10) { x = x*x; }

if (x < 30) { System.out.println(x); }

}

public static void main (String[] args) {

f(1); f(9); f(10);

}

}

Note that each command in f changes the “state” of the world (in this case x) and in
doing so communicates with the next command.

Try to predict the behavior of this program.

CSE 120 Handout 6 19

'

&

$

%

Iteration

There are various ways of causing a statement to be repeatedly executed in Java. The
most basic is the while loop:

while (TEST) { STATEMENTS }

Example:

while (x < 100) { x = x*x; }

Notice that TEST is typically a boolean expression involving some variables and, in
order for the while statement to terminate, STATEMENTS must change one or more of
those variables.

The whole while statement is — as its name implies — a statement.

CSE 120 Handout 6 20

'

&

$

%

public class test3 {

public static void f(int x) {

while (x < 100) {

x = x*x; }

System.out.println(x);

}

public static void main (String[] args) {

f(2); f(3); f(5); f(100);

}

}

This program produces the output...

256

6561

625

100

CSE 120 Handout 6 21

'

&

$

%

Factorial Again!

public static int fact(int n) {

int i = 1;

int accum = 1;

while (i <= n) {

accum = accum*i;

i = i+1; }

return accum;

}

CSE 120 Handout 6 22

'

&

$

%

Here is the same GCD algorithm as we saw a few slides ago, but this time written
iteratively (using assignment and while, rather than recursion):

public static int gcd (int x, int y) {

while (x!=y) {

if (x>y) {

x = x-y; }

else {

y = y-x; }}

return x;

}

CSE 120 Handout 6 23

'

&

$

%

Arrays

For each type eltType in Java, there is a type eltType[] of arrays whose elements are
of type eltType.

If a is an array, we can obtain the ith element of a with a[i].

We can change the ith element of a with a[i] = ...

Arrays are created by the special syntax new eltType[iexp] where iexp is an integer
expression.

int[] a = new int[10]; // create an array of 10 ints

a[5] = 7; // put 7 in the 5th position

a[6] = a[5] + 6; // put 13 in the 6th position

System.out.println(a[6]); // print value in 6th position

Note that type of an array in Java includes the type of its elements, Arrays are the only
“parametric types” in Java.

CSE 120 Handout 6 24

'

&

$

%

Arrays vs. Lists

Both arrays and lists are used to store ordered sequences of elements.

Arrays OCaml Lists

type name int[] int list

lookup of first element a[0] hd l

lookup of nth element a[n-1] nth n l

update of nth element a[n-1] = ... —

extension — x :: l

shortening — tl l

Note that Java arrays are zero-indexed. The “first” element is a[0].

CSE 120 Handout 6 25

'

&

$

%

The main advantage of arrays is efficiency:

� Accessing the nth element of a list takes n steps

� Accessing (or updating) the nth element of an array takes 1 step

The main advantage of lists is extensibility:

� Lists can be extended or shortened (with ::, tl, etc.)

� Arrays, once built, cannot be extended or shortened

(Java provides a built-in class Vector that combines some of the features of arrays and
lists. We will not cover it here.)

CSE 120 Handout 6 26

'

&

$

%

The length of an array

We find the length of an array a with the expression a.length. Why this special
syntax? Why not have length be a function as in Ocaml and write length(a)?

It turns out this is not special syntax. What we are seeing is an example of a rather
general syntax for “communicating” with an object. In this case the array a is the object
and length is a piece of data (it’s called a field or data member) associated with a.

We’ll learn more about objects, data members and methods when we have finished our
review of arrays.

For the time being, just take a.length as special syntax.

CSE 120 Handout 6 27

'

&

$

%

For example, here is a method that sets all the entries in an array to one.

public static void setToOnes (int[] a) {

int i = 0;

while (i < a.length) {

a[i] =1;

i = i+1; }

}

(Since arrays are zero-indexed, the last element is a[a.length-1].)

CSE 120 Handout 6 28

'

&

$

%

Some demystification

Our “top level” or “calling” program has the header

public static void main(String[] args)

indicating that it is a function with a parameter args that is an array of strings. What is
in the array is the “command line” arguments. This provides a sometimes useful
method of feeding data to your Java program.

CSE 120 Handout 6 29

'

&

$

%

public class MainTest{

public static void main (String[] args) {

int i = 0;

while (i < args.length) {

System.out.println(args[i]);

i = i+1;}

}

}

/home/peter/120/java>java MainTest one two three ... testing

one

two

three

...

testing

/home/peter/120/java>

CSE 120 Handout 6 30

'

&

$

%

Array initialization

An other method of constructing and initializing short arrays is to use the syntax
fe1; e2; : : : eng.

Examples:

String[] french = {"zero", "un", "deux", "trois"};

int[] aa = {1, 17, 3*3 + 4*4, 12-89};

This is shorthand for:

String[] french = new String[4];

french[0] = "zero"; french[1] = "un";

french[2] = "deux"; french[3] = "trois";

int[] aa = new int[4];

aa[0] = 1; aa[1] = 17;

aa[2] = 3*3 + 4*4; aa[4] = 12-89;

CSE 120 Handout 6 31

'

&

$

%

Sorting arrays – bubblesort

Imagine an array as a column of “liquid” elements. Initially the column is frozen. We
then unfreeze the column from the top, allowing elements to “float” up to their
appropriate positions. We assume that elements can be compared for “weight” (larger
elements are heavier).

8

2

7

3

4

1

8

2

7

3

4

1

2

8

7

3

4

1

2

7

8

3

4

1

2

3

7

8

4

1

2

3

4

7

8

1

1

2

3

4

7

8

We’ll think of the arrays as running “downwards”. Position 0 is at the top.

CSE 120 Handout 6 32

'

&

$

%

public static void bubblesort(int[] a) {

int i = 0; // i is the index of the first element in the frozen part

while (i < a.length) {

int x = a[i]; // x is the value to be "bubbled up"

int k = i-1;

while (k >= 0 && x <= a[k]) {

a[k+1] = a[k]; // move a[k] down to make room

k = k-1; }

a[k+1] = x;

i = i+1; }

}

CSE 120 Handout 6 33

'

&

$

%

public class BubblesortTest{

public static void bubblesort(int[] a) {

// ...as before...

}

public static void main (String[] args) {

int[] a = {8,2,7,3,4,1};

int i = 0;

bubblesort(a);

while (i< a.length) {

System.out.print(" " + i + ":" + a[i]);

i = i+1; }

System.out.println();

}

}

The program prints 0:1 1:2 2:3 3:4 4:7 5:8

CSE 120 Handout 6 34

'

&

$

%

Some comments on sorting.

� Our sorting function works in place. It doesn’t require another array, and doesn’t
create any auxiliary structures or garbage in the process. Compare this with the
sorting functions we wrote on lists, where we made liberal use of :: to create new
lists. Writing in place sorting functions is often important to scientists who want to
program with the biggest arrays that they can fit into main memory.

� Bubblesort is not as efficient as the mergesort or quicksort algorithms that we saw
(for lists) in ML. It may require (when?) approximately n2=2 iterations of the inner
loop (where n is the length of the array). Constructing an efficient in-place
algorithm is something of a challenge.

� As you can see, getting the arithmetic and the loop termination conditions can be
tricky. Of course, you should always use your brain to be sure that your “logic” is
correct, but in practice it never hurts to try out your code on pathological examples:
the empty array (length 0), the array whose elements are all equal, etc.

CSE 120 Handout 6 35

'

&

$

%

Searching

We often want to find where in an array a given element occurs. The simplest way to do
this is to iterate over the array.

The following function returns the first position in a at which x occurs, or -1 if x does
not occur at all in a.

public static int search (int[] a, int x) {

int i = 0;

while (i < a.length) {

if (x == a[i]) { return (i); }

i = i+1; }

return -1;

}

CSE 120 Handout 6 36

'

&

$

%

Binary Search

If the array is sorted, we can do much better than the previous method. We look at the
element in the middle of the array. If it is equal we have the answer, if it is greater than
the given element we look in the left half of the array, and if it is less we look in the right
half.

CSE 120 Handout 6 37

'

&

$

%

public static int binSearch (int[] a, int x) {

return(searchAux(a, x, 0, a.length));

}

// look for x between lo and hi-1

public static int searchAux(int[] a, int x, int lo, int hi) {

int mid;

if (lo >= hi) { return(-1); }

mid = (lo+hi-1)/2;

if (a[mid] == x) { return(mid); }

else if (x < a[mid]) { return(searchAux(a,x,lo,mid)); }

else { return(searchAux(a,x,mid+1, hi)); }

}

(Does this version always return the index of the first occurrence of x in a?)

CSE 120 Handout 6 38

'

&

$

%

Notes on binary search:

� Our algorithm terminates when hi becomes equal to or less than lo. Is this
guaranteed to happen eventually?

� The function searchAux is called n log2 n times (where n = length of array).

� We could generalize this function to perform dictionary-style lookups.

� How does this approach compare with binary search trees?

CSE 120 Handout 6 39

'

&

$

%

Some extra syntax

It’s time to introduce some extra syntax – inherited from C. It is inessential, but appears
so often that we should explain it now.
� i++. This adds 1 to i. In this sense it is equivalent to i = i+1.

However i++ can also be used as an expression: it returns the current value of i
but increments i in the process.

You’ll sometimes see tasteless programs like

while (i++ > 0) {...}

Please don’t write things like this — conserve neurons, not keystrokes!

� i--. Analogous to i++.

� “For” loops.
for(c1; e; c2)c3

in which c1, c2, and c3 are statements and e is a boolean expression. This is
equivalent to

c1; while (e)fc3; c2g

CSE 120 Handout 6 40

'

&

$

%

More on for loops

The for loop

int i;

for (i = 1; i < 10; i++) {

System.out.print(i + " "); }

is equivalent to

while (i < 10) {

System.out.print(i + " ");

i++; // or i = i+1

}

(You’ll sometimes see things like

for (int i = 1; i < 10; i++) {...}

in which the variable i is introduced inside the loop header. The translation still works.)

CSE 120 Handout 6 41

'

&

$

%

Implementing quicksort using arrays

Recall how quicksort worked on lists. We started by choosing an element x at random
(e.g., by taking the first element) and then partitioned our list into those elements that
are less than x, those that are equal to x, and those that are greater. Repeating this
process recursively on the partitions and appending the results led eventually to a
completely sorted list.

Can we do this in place?

To begin with, we need to figure out how to partition an array into those elements that
are less than or equal to x and those that are greater.

CSE 120 Handout 6 42

'

&

$

%

We place a marker at each end of the array. Suppose the chosen element is 4.

3* 9 7 4 1 8 2 4 5 6*

While the left-hand marker is on an element less than or equal to 4, move it to the right.
Similarly, while the right-hand marker is on an element greater than 4, move it to the
left.

3 9* 7 4 1 8 2 4* 5 6

Now interchange the marked values and move each of the markers in by one.

3 4 7* 4 1 8 2* 9 5 6

Repeat until the markers collide.

3 4 2 4* 1 8* 7 9 5 6

3 4 2 4 1* 8* 7 9 5 6

This gives us our partition:

3 4 2 4 1 8 7 9 5 6

CSE 120 Handout 6 43

'

&

$

%

Now we use an almost identical process to split the elements in the left partition into
two sub-partitions: those less than x, and those equal to x.

3* 4 2 4 1* 8 7 9 5 6

3 4* 2 4 1* 8 7 9 5 6

3 1 2* 4* 4 8 7 9 5 6

3 1 2 4 4 8 7 9 5 6

Now to implement quicksort, we recursively quicksort the left and right partitions. Note
that this means we want, in general, to apply our partitioning algorithms to a segment
of the array. The tricky part is getting the details right.

Just for variation, we’ll assume that we now want to sort arrays of real numbers

Since the details are tricky (especially the termination conditions) we’ll try to structure
the code so that it is ”provably” correct. Formally proving a program correct is a big
topic and well beyond the scope of CSE120. However you might be interested in
seeing some of the ingredients of a proof. Even an informal proof is a great help in
understanding the behavior of a program. We’ll show this at the end of the program.

CSE 120 Handout 6 44

'

&

$

%

Our first function is PartitionG, which rearanges the array so that everything greater
than some value is to the right and everything less than or equal is to the left.

Look at the code for partitionG. It has various assertions attached to the code. From
these assertions one can deduce that the program does what it is supposed to do. In
particular, there is an important assertion attached to a point in the while loop. This
assertion is always true, no matter which iteration of the while loop is executed. This is
called a loop invariant and is crucial in proving correctness of the program.

CSE 120 Handout 6 45

'

&

$

%

class QuickSortTest{

// Partition a[lo] .. a[hi-1] so that a[lo]..a[mid-1]

// are all <= x and a[mid]..a[hi-1] are all > x.

// Return mid.

static int partitionG(double[] a, double x, int lo, int hi) {

double temp;

int ll = lo-1; int hh = hi;

while (ll < hh-1) {

if (a[ll+1] <= x) {ll++;}

else if (a[hh-1] > x) {hh--;}

else {

ll++; hh--;

temp = a[ll]; a[ll] = a[hh]; a[hh]=temp;

}

}

return (hh);

}

CSE 120 Handout 6 46

'

&

$

%

// Same as partitionG, but now a[lo]..a[mid-1] are all < x

// and a[mid]..a[hi-1] are all >= x

static int partitionGE(double[] a, double x, int lo, int hi) {

double temp;

int ll = lo-1; int hh = hi;

while (ll < hh-1) {

if (a[ll+1] < x) {ll++;}

else if (a[hh-1] >= x) {hh--;}

else {

ll++; hh--;

temp = a[ll]; a[ll] = a[hh]; a[hh]=temp;

}

}

return (hh);

}

CSE 120 Handout 6 47

'

&

$

%

// sort array a between lo and hi-1

static void quickAux(double[] a, int lo, int hi) {

if (lo >= hi - 1) return;

double x = a[lo]; //choose an element from a "at random"

int midhi = partitionG(a,x,lo,hi);

int midlo = partitionGE(a,x,lo,midhi);

}

public static void quicksort(double [] a) {

quickAux(a,0,a.length);

}

} //end of class QuickSortTest

CSE 120 Handout 6 48

'

&

$

%

Here is the code for PartitionG annotated with assertions these are statements that
are true at the point at which they are made. A loop invariant is true no matter which
iteration we are in.

CSE 120 Handout 6 49

'

&

$

%

static int partitionG(double[] a, double x, int lo, int hi) {

// Assumption: the method is called with 0 <= lo <= hi <= a.length

double temp;

int ll = lo-1; int hh = hi;

while (ll < hh-1) {

if (a[ll+1] <= x) {ll++;}

else if (a[hh-1] > x) {hh--;}

else { // We know a[ll+1] > x and a[hh-1] < x

ll++; hh--; // So the elements can be interchanged

temp = a[ll]; a[ll] = a[hh]; a[hh]=temp;

}

// (loop invariant) At this point we know:

// (a) Elements a[lo] ... a[ll] are all <= x

// (b) Elements a[hh] ... a[hi-1] are all > x

// (c) ll < hh . Why?

}

// At this point we know ll = hh-1 . Why?

return (hh);

}

CSE 120 Handout 6 50

'

&

$

%

In the loop invariant for partitionG we asserted that \verbll ¡ hh—. To prove this
takes a little thought. At the start we know that ll < hh-1. Only one of the three
branches of the conditionals is executed. The first two change ll or hh by 1, so if either
of these is executed ll < hh will still be true. What about the third branch? This
increments ll and decrements hh, so we would violate ll < hh if, at the start of the
loop we had ll = hh+2. Suppose this were the case. The third branch is executed only
when a[ll+1] > x and a[hh-1] <= x. But now a[ll+1] = a[hh-1] so in this case we
would not have executed the third branch.

CSE 120 Handout 6 51

'

&

$

%

Using arrays to implement strings

The Java class String is probably implemented using arrays. Alternative
implementations (e.g. lists) are certainly possible.

You will find the class specification in java.lang. The method types and descriptions
given here are taken from the documentation for that class. Among the constructors for
this class is

� public String(char value[])

Allocates a new String so that it represents the sequence of characters currently
contained in the character array argument.

CSE 120 Handout 6 52

'

&

$

%

We can start to build our own string class:

class MyString{

private char [] data;

public MyString(char value[]) {

int i;

data = new char[value.length];

for (i=0; i< value.length; i++) { data[i] = value[i]; }

}

...

}

This allows us to construct strings as follows

char[] catarray = {'c', 'a', 't'};

MyString catstring = new MyString(catarray);

CSE 120 Handout 6 53

'

&

$

%

There are numerous methods listed for the String class. Two important ones are:

� public int length()

Returns the length of this string. The length is equal to the number of characters in
the string.

� public char charAt(int index)

Returns the character at the specified index. An index ranges from 0 to length() - 1.

Parameters: index - the index of the character. Returns: the character at the
specified index of this string. The first character is at index 0.

class MyString{

private char[] data;

public int length() { return(data.length); }

public char charAt(int i) { return (data[i]); }

...

}

CSE 120 Handout 6 54

'

&

$

%

Another method is

� public String concat(String str)

Concatenates the specified string to the end of this string.

If the length of the argument string is 0, then this object is returned.

Parameters: str - the String that is concatenated to the end of this String.

Returns: a string that represents the concatenation of this object’s characters
followed by the string argument’s characters.

CSE 120 Handout 6 55

'

&

$

%

Here is the code for concat

public MyString concat(MyString s) {

int i;

int j;

char [] temp;

if (s.length() == 0) {return(this);}

// Create array for result

temp = new char[data.length+ s.length()];

// Copy from data

for (i=0; i < data.length; i++) {temp[i]=data[i];}

// Copy from s

for (j=0; j < s.length(); j++) {temp[i]=s.charAt(j); i++;}

// Create the MyString

return new MyString(temp);

}

CSE 120 Handout 6 56

'

&

$

%

Yet another method provides lexicographic ordering:

� public int compareTo(String anotherString)

Compares two strings lexicographically. The comparison is based on the Unicode
value of each character in the strings.

Parameters: anotherString - the String to be compared.

Returns: the value 0 if the argument string is equal to this string; a value less than
0 if this string is lexicographically less than the string argument; and a value greater
than 0 if this string is lexicographically greater than the string argument.

Why this bizarre method of describing the comparison result? A hangover from C.

Incidentally, C programmers will note that arrays in Java have some similarity to arrays
in C, but the programming details are rather different.

CSE 120 Handout 6 57

'

&

$

%

public int compareTo(MyString s) {

int i = 0;

int j = 0;

while(i < data.length && j < s.length() && data[i] == s.charAt(j)) {

i++;

j++; }

if (i == data.length && j==s.length()) { return(0); }

if (i == data.length) { return(1); }

if (j == s.length()) { return(-1); }

return(s.charAt(i) - data[i]); // The C hangover

}

CSE 120 Handout 6 58

