
'

&

$

%

CSE 120/130

Introduction to

Programming Languages and Techniques

Fall 2000

Handout 8

CSE 120 Handout 8 1

'

&

$

%

Java and the Homework

� The homework focuses on the Classes you need to add/modify

� We’re going to look at how those classes are used with the Shapes interface. This
will review earlier lectures in the context of the homework, and therefore provide
further understanding of what you are doing for the homework.

� Some details on the coordinate system that will be useful for doing the homework.

� The due date is Wednesday, December 6.

� A sample solution is up on the homeworks page

� An announcement:

CSE 120 Handout 8 2



'

&

$

%

The Dining Philosophers is holding an end-of-semester

Study Break

This Sunday, December 3rd,

from 5:30 to 7pm

in the Moore Lounge.

There will be food, including hoagies, wings,

and other good stuff from Lee's.

We're going to be raffling away some Microsoft Development

Software, and possibly some programming books.

The event is kindly sponsored by iPhrase Technologies.

CSE 120 Handout 8 3

'

&

$

%

Overview of hw10.java

� The details of how the code is interfaced to a web document are done for you. This
is “event-driven” programming - there is no main method in the code!

� Four Parts:

� The definition of the Shape interface

� The definition of the Classes that implement Shape: Box and Circle are given to
you, based on the ones shown before in the lecture notes. You need to write two
more, Triangle and Polygon. Note that in handout 7, Box did not implement
Shape. Instead it was a Class used only to return the boundingBox. Now it is
used for both purposes.

� A Class Student which handles various actions like moving the shapes and
what happens when a button is pressed. Student uses the interface Shape to
communicate with the Classes Box and Circle. You need to make some
modifications to this.

� Class hw10 - do not touch! This handles the GUI (graphical user interface) and
you do not need to understand it for this homework.

CSE 120 Handout 8 4



'

&

$

%

The Shape Interface

interface Shape {

void move(double x, double y);

Box boundingBox();

void paint(Graphics g);

// we got rid of expand, and added paint

}

class Box implements Shape {

...

}

class Circle implements Shape {

...

}

� The Box and Circle Classes “implement” Shape, which means they must have
methods matching the Shape specification.

� These methods will be called by the Student class. Box and Circle are subtypes
of the interface Shape. (see also handout 7, p. 51).

CSE 120 Handout 8 5

'

&

$

%

Different Classes that Implement the Shape Interface

move
boundingBox
paint

Polygon

Interface Shape  {
  void move(double x, double y);
   Box boundingBox();
   void paint(Graphics g);
}

Circle

move
boundingBox
paint

move
boundingBox
paint

Triangle

Box

move
boundingBox
paint

move
boundingBox
paint

Line

Included in hw10.java

You need to write for the homework

Given to you in lab notes #10

CSE 120 Handout 8 6



'

&

$

%

The Shape Interface - A Closer Look

interface Shape {

void move(double x, double y);

Box boundingBox();

void paint(Graphics g);

}

� move: as discussed before

� boundingBox: After the user selects a button, the GUI passes coordinates
indicating the mouse-click(s) to the Student object. The Student object uses
bounding Box() to determine what objects were referenced by the mouse-click(s).
This indicates which objects to move, and will also be used by your delete code to
indicate which objects to delete.

� paint: g is part of the “magic”, specifying an area to paint. The code for Box and
Circle each determine how objects of that Class will be painted.

CSE 120 Handout 8 7

'

&

$

%

Review: Objects and Classes - A Rough Analogy

You can’t do anything with int except use it to declare a variable:

int i=5;

The primitive types int, float, etc. can be considered ‘templates’ that are used to
define variables. The int type tells Java that the size of the int variable is 4 (or
whatever) bytes long and is treated as an interger, float is 8 (or whatever) bytes long
and is treated as a float, etc.

� Classes are analogous to types, and objects to variables.

� Classes can be considered ‘templates’ used to define objects just as types are
‘templates’ used to define objects.

CSE 120 Handout 8 8



'

&

$

%

An Example:

String is actually a Class, not a primitive type. The statement:

String a = "test";

String b = "this!";

is actually short for:

String a = new String("test");

String b = new String("this!");

String is the class, and a and b are two Objects of the Class String

CSE 120 Handout 8 9

'

&

$

%

How the Student Class communicates with the Shapes

The Student Class keeps an array of Shape objects, using count to keep track of how
many there are (similar to what you did for implementing a Stack in the last homework):

Shape[] shapes = new Shape[10000];

int count = 0;

� Recall (handout 7, slide 46) that Interfaces, like Classes, can be used as the types
of variables.

� The Shape array is used to store objects that are Boxes or Circles. There can be
any number of Boxes or Circles each, up to 10000.

CSE 120 Handout 8 10



'

&

$

%

The Student Class has a method addShape:

public void addShape (Shape s) {

shapes[count] = s;

count++;

}

and is called within Student in different ways, depending on what subtype of Shape is
being created:

...

addShape(new Box(minx, miny, maxx-minx, maxy-miny));

...

addShape(new Circle(x[0], y[0], radius));

(these parameters indicate where the new Box or Circle is to be placed. We’ll explain
shortly where these come from)

CSE 120 Handout 8 11

'

&

$

%

The code in the Student Class uses the fact that each object in the shapes array must
have method boundingBox and move, since they are all objects that are subtypes of
Shape

// dx is the change in the x coordinate

// dy is the change in the y coordinate

// x[0],y[0] are the coordinates of the mouse click

for (int i = 0; i < count; i++) {

if (shapes[i].boundingBox().contains (x[0], y[0])) {

shapes[i].move(dx, dy);

}

}

For each shape, if the bounding box of the shape contains the mouse click, then move
that object.

You will do something very similar for the delete button in problem 3 of the homework.
For each shape, if the bounding box of the shape contains the mouse click, then delete
that object. It’s deleted by adjusting the elements of the shapes array accordingly.

CSE 120 Handout 8 12



'

&

$

%

The code in the Student Class also uses the Shape interface for the paint method:

public void paint (Graphics g) {

g.setColor(Color.red);

for (int i = 0; i < count; i++) {

shapes[i].paint(g);

}

}

The Student.paint method is called by the GUI when appropriate. In turn, it goes
through each shape in the shapes array and calls its paint method.

You do not need to modify the code paint in the Student class. However, for each of
the two Classes you write, Triangle and Polygon, you need to write a paint method to
display them properly.

The easiest way to do this is to look at the paint code for Box, Circle, and Line(from
the lab notes #10), and imitate, along with an understanding of how the coordinate
system works.

But first, a question

CSE 120 Handout 8 13

'

&

$

%

Type-casting and Interfaces

While objects that are subtypes of Shape must have the three methods specified in
Shape, they of course can have others. For example, objects of Class Box have a
method contains, which was used in the previous slide. But consider:

if (shapes[0].contains (x[0], y[0])) {...

The compiler will complain:

t.java:36: Method contains(double, double) not found in interface Shape.

if (shapes[0].contains(1.0,2.0)) {

While it’s possible that shapes[0] may be a Box object, it could also be a Circle or any
other subtype of Shape. You could instead cast it to be of type Box:

if (((Box)shapes[0]).contains (x[0], y[0])) {...

This is a declaration to the typechecker that we “know” that the actual type of the object
stored in shapes[0] at runtime will be Box. At compile time, the typechecker just
believes what we tell it, and at runtime it double-checks that it really is a Box.

CSE 120 Handout 8 14



'

&

$

%

if (((Box)shapes[0]).contains (x[0], y[0])) {...

Contrast this to the earlier:

if (shapes[i].boundingBox().contains (x[0], y[0])) {...

Why the difference?

CSE 120 Handout 8 15

'

&

$

%

How You Deal with the Coordinate System

� The issue: Different operations require different amounts of information from the
mouse. To create a Box, you need two sets of (x,y) coordinates. To create a
Polygon, there can be any number of (x,y) coordinates, as long as there’s at least
one. To do a delete, only one (x,y) coordinate is needed.

� The GUI keeps track of where the user clicks the mouse. It accumulates the
coordinates of each mouse click in two arrays, for the x and y coordinates.

� The method handleButton in the Student Class receives this information from the
GUI. It is up to you to extend this method for the proper handling of the new classes
and methods that you need to write.

public void handleButton (String name, double[] x, double[] y) {

...

}

� (x[0],y[0]) is the position of the first mouse click, (x[1],y[1]) is the position of
the second mouse click, etc. name is the name of the button which was
pressed(e.g., “Box”, “Move”)

CSE 120 Handout 8 16



'

&

$

%

How handleButton for “Box’ works:

public void handleButton (String name, double[] x, double[] y) {

if (name == "Box" && x.length >= 2) {

double minx = Math.min(x[0],x[1]); double maxx = Math.max(x[0],x[1]);

double miny = Math.min(y[0],y[1]); double maxy = Math.max(y[0],y[1]);

addShape(new Box(minx, miny, maxx-minx, maxy-miny));

The constructor for Box expects the coordinates of the lower left corner, together with
the width and height:

Box(double x, double y, double w, double h){

xpos = x; ypos = y; wid = w; ht = h;

}

Example: two mouse clicks at (3,4), (6,6). handleButton receives the arguments x and
y with

x[0]=3, [1]=6

y[0]=4, [1]=6

handlebutton makes the call new Box(3,4,3,2)

CSE 120 Handout 8 17

'

&

$

%

Continuing the Example: Inside the Box Object

handlebutton just made the call

new Box(3,4,3,2)

This will set up the instance variables (fields) of the new Box object appropriately:

class Box implements Shape {

double xpos; // coordinates of corner

double ypos;

double wid; // width

double ht; // height

Box(double x, double y, double w, double h){

xpos = x; ypos = y; wid = w; ht = h;

}

CSE 120 Handout 8 18



'

&

$

%

class Box implements Shape {

double xpos; // coordinates of corner

double ypos;

double wid; // width

double ht; // height

Box(double x, double y, double w, double h){

xpos = x; ypos = y; wid = w; ht = h;

}

But in the paint method for Box, these need to be cast from double to int (as the
homework says to do for Triangle and Polygon):

public void paint (Graphics g) {

g.drawRect ((int)xpos, (int)ypos, (int)wid, (int)ht);

}

This is the same basic idea as the other use of casting, but here the compiler will force
xpos, etc. to be integers no matter what, even by truncating any non-integer part.

CSE 120 Handout 8 19


