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CSE 120/130

Introduction to

Programming Languages and Techniques

Fall 1999

Handout 1

Instructors: Peter Buneman 562 Moore MW 12–1
Lyle Ungar 560 Moore TW 1–2
Seth Kulick (CSE130) 126 Moore M 2–3 and W 2:30–3:30
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Additional Personnel and Information

Teaching Assistants: Matthew Beitler
Aaron Bloomfield
Vladimer Gapeyev
Alwyn Goodloe
Gang Huang
Pankaj Kakker
Xiaoyi Ma
Jonathan Vitale
John Wen
Dianna Xu

Administrative Assistant: Christine Metz, 556 Moore

Webpage: http://www.seas.upenn.edu/�cse120

Newsgroup: upenn.cis.cse120

Course Email: cse120@seas.upenn.edu
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Basic Administrative Stuff

This course is required of all majors in Computer Science.

There is a lab associated with the course, CSE130. If you are enrolled in this course
you must also be enrolled in a section of 130.

You will receive 1.5 credits for the course and lab (same grade for both).
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Grading

The required work for the course will consist of the following:

� Written homeworks and programming exercises, in conjunction with the lab

� Examinations (2 midterms and a final exam)

Final course grades will be computed as follows:

� The final exam counts for 35% of the course grade

� The average grade of the homeworks counts for 25% of the grade

� Each midterm counts for 20% of the grade.

� However: you must have a passing grade on the homework portion to pass the
course

Late Policy for Homeworks: Late assignments will be penalized 25%, and will not be
accepted after 10am of the day following the due date.
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The following activities are not graded but will have a strong bearing on your
performance on the homeworks, programming exercises, and exams:

� Attending and participating in lectures and labs

� Reading the handouts, course newsgroup, and on-line materials
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Exams

1. First mid-term: Wednesday, October 11, in class.

2. Second mid-term: Wednesday, November 8, in class.

3. Final: Monday, December 18, 4-6PM

Additional administrative information will be provided during the semester. Keep an eye
on the course web page and the newsgroup.
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Discussion vs. cheating

You are free — in fact, encouraged — to discuss the material in this course, including
assignments, with the instructors, TAs, and your fellow students.

However, the work you hand in must be your own. Copying assignments (or cheating of
any other nature) carries serious penalties, in accordance with University procedures.
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Advertisement

”Connections – Computing Resources at Engineering”
Orientation for Engineering Students

The ENIAC Museum - Moore Building

Friday Sept. 8 2 pm

Tuesday Sept. 12 12 noon

Thursday Sept. 14 4 pm
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Textbooks

There is no textbook for the first part of the course, however we are developing a short
“primer” as an introduction to the programming language and topics for this part of the
course. Textbooks for the second part of the course will be announced shortly.

1. Arnold and Gosling The Java Programming Language Second (1998) or Third
(2000) Edition, Addison-Wesley, (required).

2. Savitch Java: An Introduction to Computer Science and Programming, 1998/9
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What this course is like.

You do not need to have any programming experience to take this course. In fact, the
first language we use will be new to almost everybody, and is sufficiently different from
“standard” programming languages (C, C++, Java) that people who know one of these
languages are not at any great advantage.

However, some computer experience helps. Knowing about files, editors, directories
etc. is useful in the first stages of the course. It does not take long to learn this, but you
need to do it almost on day one of the course. The labs will help you get started in the
computing environment provided for this course.

The course is introductory but fast-paced. Don’t get left behind!
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What this course is about

CSE120 and CSE121 are rather different from most introductions to Computer Science
(which start off rather slowly with low-level programming).

It has two purposes:

� General Introduction to Computer Science . Computer Science is much, much
more than writing programs. It is one of the great intellectual advances of this
century.

� Basic Techniques of Programming . Recursion and iteration, fundamental data
structures (lists, trees, etc.), value-oriented and object-oriented programming
styles, types, evaluation, algorithmic complexity, etc.

CSE 121 continues both of these topics in greater depth.
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Some “Big Ideas” in Computer Science

Computer Science has generated remarkable ideas in its half-century history. We will
touch on several in CSE120.

Computability
When Eniac was built 55 years ago very few people understood what it meant to
compute something. Even less understood was the idea that some problems cannot be
“computed” at all.

Efficiency
Almost every interaction with a computer involves a non-trivial program. How does Alta
Vista or Yahoo search 100 million web pages in a fraction of a second to find those that
contain the pages that contain your search term?

Some problems are believed to have no efficient solution. Ironically, this fact can be
used to positive effect, for example in cryptography: all known approaches to “cracking”
a strong cryptosystem take too long on even the fastest of computers.
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Representation
How we represent a problem or domain is crucial to our ability to understand and to
program with it.

Databases were revolutionized with the invention of relational databases (and they may
undergo another revolution following the recent development of XML).

Abstraction
Transistors “abstract away” from the details of electrophysics. Microprocessor
architectures abstract away from the details of transistors. Operating systems abstract
away from the details of microprocessor architectures. Application libraries abstract
away from the details of operating systems. User programs abstract away from the
details of application libraries...

Abstraction is a constant activity in programming. The program you write to sort a
sequence of integers should work equally well to sort a sequence of bank account
transactions. How do we abstract from the specific to the general?
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Programming Languages Matter

A programming language is a precise notation for expressing instructions to a
computer.

A programming language is also a medium for communicating ideas between human
beings.

A well-designed programming language makes both these tasks easier, leading to
programs that are more robust, faster, and easier to understand.
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Programming Languages Don’t Matter

A programming language is a “power tool”: a fair amount of detailed knowledge is
usually required to use it well.

However, it’s important not to become too attached to any particular language. Imagine
a carpenter that knew how to use a jigsaw, but not a circular saw. Or a composer that
could only write for alto clarinet...

Languages come and go, while the fundamental concepts of programming remain
relatively stable.
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ML and Java

We will work with two languages in this course:

ML is a powerful and elegant language, emphasizing a “value-oriented” style of
computation. It is only beginning to catch on outside of academia: you are
unlikely to use it in your summer job next year. However, it provides an ideal
setting for discussing many fundamental ideas in computer science, allowing
us to get straight to the meat of the subject at the beginning of the course.

Java is a mainstream “object-oriented” language. It owes much of its current
visibility to its use in distributing tiny applications (“applets”) across the World
Wide Web, but it is gaining popularity in many other areas of software
development.
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Getting Started – Syntax and Semantics

Like natural languages, computer languages have both syntax (rules governing which
strings of text are legal programs) and semantics (rules specifying what those
programs do or mean).

We are quite used to dealing with the fact that different pieces of text (syntax) can have
the same meaning (semantics):

� 34

� thirty four

� trente-quatre

� XXXIV

� 16 + 18

� XVI + XVIII (yes, the Romans wrote this)

� Ox22 (hexadecimal)
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Computing with Expressions

Every program in Objective Caml is an expression. The “meaning” of the program is
the value of the expression.

The simplest OCaml programs express calculations with numbers and other basic
forms of data, using a syntax resembling familiar mathematical notation:

# 16 + 18;;

- : int = 34

# 2*8 + 3*6;;

- : int = 34

The basic mode of interacting with OCaml is typing in a series of expressions; OCaml
evaluates them as they are typed and displays the results. In the interaction above,
lines beginning with # are inputs and lines beginning with - are the system’s responses
Note that inputs are always terminated by a double semicolon.

The annotation int in the responses is the type (i.e. integer) of the results.
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In this course, we concentrate on how we express computations and
not on how particular computers perform, say, addition. How comput-
ers perform addition, and more generally how they are organized as
engineered machines/devices is the topic of an important field, Com-
puter Architecture, studied extensively in other courses. One of the
goals of the present course is to introduce programming in a machine-
independent fashion, as much as possible. As software became more
complex, being able to understand computation in terms more abstract
than those of the computer architecture became essential.
The idea of using mathematical notation to specify computation was
an essential step in programming languages, going back to FORTRAN
(FORmula TRANslator) 1954.
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Expressions have a basic uniform structure: functions applied to arguments. As in
usual mathematical practice, ML uses infix notation for operations such as addition and
multiplication. For other sorts of functions (e.g. min, log), it uses a prefix notation
similar to the standard notation from mathematics.

p
2 sqrt 2

6! fact 6

3+ 4 3+4

3+ 4 � 5 3+4*5

min(3; 4) min 3 4

(In algebra, the dot for multiplication is often omitted. This is not allowed in OCaml.)
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Expressions are composed of sub-expressions. The values of the sub-expressions are
used in computing the value of the expression.

Sub-expressions may be parenthesized to indicate the order in which operations are
applied. When parentheses are omitted, the precedence of the operations determines
the grouping of sub-expressions.

# (2 * 8) + (3 * 6);;

- : int = 34

# 2 * 8 + 3 * 6;;

- : int = 34

# 2 * (8 + 3) * 6;;

- : int = 132

# ((2 * 8) + 3) * 6;;

- : int = 114
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Other kinds of expressions (preview)

String expressions (^ is string concatenation):

# "cats" ^ " and " ^ "dogs";;

- : string = "cats and dogs"

List expressions ( List.rev is list reverse and @ is list concatenation):

# List.rev [1; 2; 3];;

- : int list = [3; 2; 1]

# [1; 2; 3; 4; 5] @ (List.rev [9; 8; 7; 6]);;

- : int list = [1; 2; 3; 4; 5; 6; 7; 8; 9]

Mixed expressions (the result is a boolean):

# 2200 > 7 * 314;;

- : bool = true

In fact, ML carries the idea of computing with expressions much further than languages
like FORTRAN, Pascal, C/C++ or Java.
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Giving things names

It is convenient to name values, both so that we can remember them

# let inchesPerMile = 12*3*1760;;

val inchesPerMile : int = 63360

and for efficiency:

# let a = 8 * 16 * 127;;

val a : int = 16256

# a * a + 2 * a;;

- : int = 264290048

(If we had performed the equivalent computation

# 8*16*127 * 8*16*127 + 2 * 8*16*127;;

we would have used eight multiplications rather than four.)
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In general, a let declaration gives a name to the value that results from
an expression. Such names are also called variables or identifiers.
Warning: as opposed to Pascal or C, the value associated with a vari-
able in ML cannot be changed later through “assignment.” We say
that ML is (predominantly) a functional or value-oriented language while
Pascal and C are imperative languages.
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Functions

A calculation that is to be repeated many times on different data can be captured by a
single function declaration:

# let cube (x:int) = x*x*x;;

val cube : int -> int = <fun>

# cube 9;;

- : int = 729

We call x the parameter of the function cube; the expression x*x*x is its body.

The expression cube 9 is an application of cube to the argument 9.

The type printed by OCaml, int->int (pronounced “int arrow int”) indicates that cube
is a function that should be applied to a single, integer argument and whose result is an
integer.

Note that OCaml responds to a function declaration by printing just <fun> as the
function’s “value.”
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Here is a function with two parameters:

# let sumsq (x:int) (y:int) = x*x + y*y;;

val sumsq : int -> int -> int = <fun>

# sumsq 3 4;;

- : int = 25

The type printed for sumsq is int->int->int, indicating that it should be applied to two
integer arguments and yields an integer as its result.

Note that the syntax for invoking function declarations in OCaml is slightly different from
languages in the C/C++/Java family: we write cube 3 and sumsq 3 4 rather than
cube(3) and sumsq(3,4).

CSE 120 Handout 1 24



'

&

$

%

Function Evaluation

It is easy to understand how applications of functions are evaluated. Take our example:

# let cube (x:int) = x*x*x;;

To evaluate cube 9, we substitute 9 for x in the body of cube to get 9*9*9. This is then
evaluated as usual to get the answer, 729.

How do we evaluate cube(cube(2))?
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Functions with Conditions

# let abs(x:int) = if x>=0 then x else -x;;

val abs : int -> int = <fun>

# abs (5-3);;

- : int = 2

# abs (3-4);;

- : int = 1

The meaning of this function is clear — it computes the absolute value of an integer.

The whole body of abs (i.e., if x>=0 then x else -x) is an expression. It has three
sub-expressions: x>=0, x, and -x.

The second and third of these are integer expressions. The first is a boolean
expression, whose value can either be true or false, depending on what argument we
substitute for the parameter x.

CSE 120 Handout 1 26



'

&

$

%

The type boolean

There are only two values of type boolean, true and false. Comparison operations
return boolean values:

# 1 = 2;;

- : bool = false

# 4 >= 3;;

- : bool = true

# not (2 = 2);;

- : bool = false

not is a unary operation on booleans.
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# 2 = 3 || 4 > 3;;

- : bool = true

# 2 = 3 && 4 > 3;;

- : bool = false

# if 3 = 4 then 17 else 64;;

- : int = 64

The operator || means or and && means and.

The conditional if B then E1 else E2 is an expression and has a result which is
either the result of E1 or that of E2, depending on whether the result of B is true or
false.

CSE 120 Handout 1 28



'

&

$

%

A conditional expression can be a sub-expression of another expression:

# if 3 = 4 then 17 else if 5 = 5 then 64 else 77;;

- : int = 64

# 2 * (if 5 = 5 then 64 else 77);;

- : int = 128
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Another example

# let ord3 (x:int) (y:int) (z:int) = x < y && y < z;;

val ord3 : int -> int -> int -> bool = <fun>

# ord3 1 2 3;;

- : bool = true

# ord3 2 1 3;;

- : bool = false
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Defining things inductively

In mathematics, we often define things inductively by giving a “base” case and an
“inductive step”. For example, the sum of all integers from 0 to n or the product of all
integers from 1 to n (the factorial):

sum(0) = 0

sum(n) = n+ sum(n- 1) if n � 1

fact(1) = 1

fact(n) = n � fact(n- 1) if n � 2

It is customary to extend the factorial to all non-negative integers by adopting the
convention fact(0) = 1.
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Recursive functions

We can translate inductive definitions directly into recursive functions. We use rec after
the let to indicate that this is a recursive function — one that can “call” itself in its own
body.

# let rec sum(n:int) = if n = 0 then 0 else n + sum(n-1);;

val sum : int -> int = <fun>

# sum(6);;

- : int = 21

# let rec fact(n:int) = if n = 0 then 1 else n * fact(n-1);;

val fact : int -> int = <fun>

# fact(6);;

- : int = 720

(Note that these definitions will only “work” for non-negative integers.)
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Understanding Recursive Functions

We can use substitution to explain how a recursive function gets evaluated:

fact(3)

if 3 = 0 then 1 else 3 * fact(3-1)

3 * fact(2)

3 * ( if 2 = 0 then 1 else 2 * fact(2-1) )

3 * 2 * fact(1)

3 * 2 * ( if 1 = 0 then 1 else 1 * fact(1-1) )

3 * 2 * 1 * fact (0)

3 * 2 * 1 * ( if 0 = 0 then 1 else 1 * fact(0-1) )

3 * 2 * 1 * 1

6
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We have intentionally glossed over some of the details of how and when
things get evaluated (these will come later) but it is important to note that
we can explain the computation through manipulation of syntax and that
the meaning of the program can be explained without reference to any
particular compiler or machine.
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Not all recursive definitions “work”

Consider the mathematical definition:

stupid(n) = 0 if n = 0

stupid(n) = n+ stupid(n+ 1) otherwise

and the corresponding program

# let rec stupid(n:int) = if n = 0 then 0 else n + stupid(n+1);;

val stupid : int -> int = <fun>

# stupid 10;;

Stack overflow during evaluation (looping recursion?).

A mathematician would say that the function is “ill-defined” for positive integers; a
computer scientist would say that it would “not terminate” or “loop forever”. In fact,
OCaml doesn’t even loop forever. It can handle a large but limited number of recursive
calls. Certainly our evaluation-by-substitution process would not terminate.
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Calculating n
m

# (* Computes n to the mth power. Assumes m >=0 *)

let rec power (n:int) (m:int) =

if m = 0 then 1 (* Test for m = 0 *)

else n * power n (m-1);;

The text between (* and *) is a comment and is ignored by the compiler. However it
will not be ignored by readers of your program. Good comments are essential.

The comment by the function header is an important and necessary comment. (Why?)
The second comment is pointless.
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Euclid’s Algorithm

The Greatest Common Divisor (GCD) of two positive integers is the largest integer that
divides both. For example, gcd(9; 12) = 3 Here are three useful facts about gcd:

gcd(x; x) = x

gcd(x; y) = gcd(y; x)

gcd(x; y) = gcd(x- y; y) if x > y

We can translate this into an ML algorithm. Note the use of OCaml syntax for defining
and applying two-argument functions.

# (* Compute the GCD of two numbers *)

let rec gcd (x:int) (y:int) =

if x = y then y

else if x > y then gcd (x-y) y

else gcd x (y-x);;

It’s easy to see that if the program terminates, it terminates with a correct answer. But
how do we know it terminates for all arguments?
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N.b.: This is not precisely the form in which Euclid presented this al-
gorithm. (Euclid’s version used the modulo operation, which OCaml
provides but which we haven’t seen yet.)
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Choosing n things from m

How many ways can we choose a set of n things from a given set of m things. Call this
number C(n;m). Example: a selection of 10 pizza toppings is offered and you can
choose three different toppings for the standard charge. The number of ways of doing
this is C(3; 10).

How do we compute C(n;m)? Consider one of the set of m objects – say anchovies –
the number of choices that contain anchovies is C(n- 1;m- 1). The number of
choices that do not contain anchovies is C(n;m- 1) So we have the equation

C(n;m) = C(n- 1;m- 1) + C(n;m- 1):

We also need to know that C(m;m) = 1 and that C(0;m) = 1.
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Here is the inductive definition translated into OCaml. Again note the use of the OCaml
syntax choose n m for the mathematical notation C(n;m).

# (* choose n things from m *)

let rec choose (n:int) (m:int) =

if n = m || n = 0 then 1

else choose (n-1) (m-1) + choose n (m-1);;

# choose 3 10;;

- : int = 120

As for Euclid’s algorithm, an important part of understanding this program is seeing
why it terminates.
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Making Change

Here is another interesting use of recursion on integer arguments. Suppose you are a
bank and therefore have an “infinite” supply of money, and you have to give a customer
a certain sum. How many ways are there of doing this?

If you only have pennies, there is only one way of doing this: pay the whole sum in
pennies.

# (* No. of ways of paying s in pennies *)

let rec changeP (s:int) = 1;;

That wasn’t too hard!
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Making Change – continued

Now suppose the bank has both nickels and pennies. If s is less than 5 then we can
only pay with pennies. If not, we can do one of two things:

� Pay in pennies; we already know how to do this.

� Pay with at least one nickel. The number of ways of doing this is the number of
ways of making change (with nickels and pennies) for s-5.

# (* No. of ways of paying in pennies and nickels *)

let rec changePN (a:int) =

if a < 5 then changeP a

else changeP a + changePN (a-5);;
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Making Change – continued

Continuing the idea for dimes and quarters:

# (* ... pennies, nickels, dimes *)

let rec changePND (a:int) =

if a < 10 then changePN a

else changePN a + changePND (a-10);;

# (* ... pennies, nickels, dimes, quarters *)

let rec changePNDQ (a:int) =

if a < 25 then changePND a

else changePND a + changePNDQ (a-25);;
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Finally:

# (* Pennies, nickels, dimes, quarters, dollars *)

let rec changePNDQS (a:int) =

if a < 100 then changePNDQ a

else changePNDQ a + changePNDQS (a-100);;

Some tests:

# changePNDQS 5;;

- : int = 2

# changePNDQS 9;;

- : int = 2

# changePNDQS 10;;

- : int = 4
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# changePNDQS 29;;

- : int = 13

# changePNDQS 30;;

- : int = 18

# changePNDQS 100;;

- : int = 243

# changePNDQS 499;;

- : int = 33995
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Summary of concepts in this handout

� Syntax and semantics

� Integer expressions

� Giving names to values

� Boolean expressions

� Defining functions

� Recursive functions
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