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A closer look at array parameters

What does the following Java program print?

public class test {

public static void f(int[] x) {

x[1] = 5;

}

public static void main (String[] args) {

int[] a = {0,1,2,3};

f(a);

System.out.println(a[1]);

}

}

If we think carefully about it, this is a little surprising.
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The rule we have seen for evaluating an application f(a) goes like this:

1. Evaluate a to produce a value v

2. Look up the function (in ML) or method (in Java) f, to find

� its body, b

� the name of its parameter

� its definition environment

3. Extend the definition environment with bindings of the parameter variable to the
argument value

4. execute the body b
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So, going back to the old “pieces of paper” method, we might picture the sequence of
evaluation steps like this:

1. Bind a to a 4-element array:

main

a ! 0 1 2 3

2. To execute f(a), create a new piece of paper for the call to f and write down the
binding of x to the array.

main

a! 0 1 2 3

f

x ! 0 1 2 3

3. Execute the assignment x[1] = 5.

main

a! 0 1 2 3

f

x ! 0 5 2 3
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4. Since f is now finished, throw away its piece of paper and continue executing main:

main

a ! 0 1 2 3

5. Print the current value of a[1], which is 1.

Since the Java program actually prints 5, our model of how execution works is clearly
not quite right. How do we fix it?
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The mistake we made was in just copying the array from the first piece of paper to the
second. Since arrays are mutable structures, we can’t just copy them when we need to
start a new piece of paper: we need to remember that the “copy” is just a new name for
an array that we have already allocated.

Pictorially, we can represent the situation like this. When we call f, instead of copying
the array value to the new piece of paper, we put a reference back to the original array:

main

a ! 0 1 2 3 * f

x ! *

Now when we execute x[1] = 5, it is clear that we are changing the original array.

(Draw an arrow from the second * to the first.)
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Our picture will be more consistent (and more accurate) if we draw it a little differently.
Instead of writing the array on the first piece of paper and then putting an arrow to it
from the second, we should really allocate the array outside of either piece of paper
and draw arrows to it from both:

0 1 2 3 *

main

a ! *

f

x ! *

(Draw arrows from the second and third *’s to the first.)
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Quick check

Sketch out what happens when this program executes:

public class test {

public static int[] f() {

int[] x = {0,1};

x[1] = 5;

return x;

}

public static void main (String[] args) {

int[] a = f();

System.out.println(a[1]);

}

}
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What about this one?

public class test {

public static void main (String[] args) {

int[] a = {0,1};

int[] b = {2,3};

b[1] = 99;

a = b;

System.out.println(a[1]);

}

}
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Aliasing

We can say that a and x in our original example are both aliases for the same array —
two different ways of referring to the same piece of storage.

Moreover, aliasing does not just come up when we use arrays: we will soon see that it
applies to objects as well.

The phenomenon of aliasing can sometimes make reasoning about Java programs
quite subtle.

For example...

public static void f(int[] a, int[] b) {

a[1] = 0;

b[1] = 5;

System.out.println(a[1]);

}

The method f always prints 0, right?
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Wrong.

public class test {

public static void f(int[] a, int[] b) {

a[1] = 0;

b[1] = 5;

System.out.println(a[1]);

}

public static void main (String[] args) {

int[] a = {0,1,2,3};

f(a, a);

}

}

If the parameters a and b are aliases for the same array, it prints 5.
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Classes

Classes do many things for us in Java. We have already seen one use: each of the
Java programs we have seen so far has been “wrapped up in” a class whose name
corresponds to the name of the file in which the program is stored.

Classes in Java also play a role analogous to ML’s datatypes. If we want to “package”
several pieces of data together, we use a class. For example, Java does not have
built-in tuple types such as int * string. When we want such a type, we build it using
an appropriately defined class.

Recall that earlier this semester (Handout 4) we designed a type for a square, as it
might be used in a rudimentary graphics program.

(xpos, ypos)

wid
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To build a new type Square, which contains the x and y co-ordinates of the lower left
corner and a width, we can write:

class Square {

double xpos;

double ypos;

double wid;

}
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There are several things we can do with a Square; the first is to create one:

new Square ();

Another is to declare variables holding values of type Square. This declaration declares
the variable s to hold a Square value and initialize s to a newly created square:

Square s = new Square ();

Note that the identifier Square in Java is used both for the type of squares and as the
operation for constructing new values of this type.

In object-oriented parlance, we say that s holds an object that is an instance of the
class square.

(We also sometimes revert to more ml-like terminology and say “s has type square.”)
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In our ml programs, datatype declarations were typically placed at the top of the
program.

In java, class definitions like square are placed outside of the main class definition.
Here, for example, is a complete program that defines the square class, uses it to
create a square object, prints a useless message, and terminates.

class Square {

double xpos;

double ypos;

double wid;

}

public class test {

public static void main (String[] args) {

Square s = new Square();

System.out.println("That was fun");

}

}
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The fields of an object

The names x, y and wid are the parts of a square object that contain data. They are
called the fields or data members of the object.

We can put data into a field by an assignment statement.

s.xpos = 1.5;

We can also extract data from a field by using the same notation (s.xpos) in an
expression. E.g.,

System.out.println(2.5 + s.xpos);
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We can put these ideas together to write methods (in the main class) that create new
squares by transforming squares that they are passed as arguments:

public static Square move(Square s, double dx, double dy) {

Square res = new Square();

res.xpos = s.xpos + dx;

res.ypos = s.ypos + dy;

res.wid = s.wid;

return res;

}

public static Square expand(Square s, double factor) {

Square res = new Square ();

res.xpos = s.xpos - wid * 0.5 * (factor - 1);

res.ypos = s.ypos - wid * 0.5 * (factor - 1);

res.wid = factor * s.wid;

return res;

}

CSE 120 Handout 7 17

'

&

$

%

These behave like the ML functions we could write for the data type square.

(Note that expanding a square (about its center) moves the coordinates of its
bottom-left corner.)
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A complete program:

class Square {

double xpos;

double ypos;

double wid;

}

public class test5 {

// code for move and expand as above

public static void main (String[] args) {

Square s = new Square();

s.xpos = 1; s.ypos = 1; s.wid = 0.5;

Square q = expand(move(s, 1.0, 1.0), 1.5);

System.out.println(q.xpos + " " + q.ypos);

}

}
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The output from this program is

1.875 1.875

Note that this is a complete program with two classes. test5 is the class that matches
the file name and is the one from which the main method is called when the program is
run.

Note. We have been sloppy and have left out public. This means that the data
membersa and methods are only visible within a given package. If all your code is in
one file, it’s all in the same package. More about packages later.
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Programming with state

Objects have “state” – the values in the fields – and we can change the state of these
fields just as we can change the contents of an array. For example, we might choose to
make our functions on squares change the state of the square object they are given
rather than creating a new square and returning it:

public static void move(Square s, double dx, double dy) {

s.xpos = s.xpos + dx;

s.ypos = s.ypos + dy;

}

public static void expand(Square s, double factor) {

s.xpos = s.xpos - s.wid * 0.5 * (factor - 1);

s.ypos = s.ypos - s.wid * 0.5 * (factor - 1);

s.wid = factor * s.wid;

}
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Now observe how the calling program differs. Rather than applying a sequence of
functions to a square, resulting in new squares each time, we perform a sequence of
commands that change the states of the fields of our original square:

public class test6 {

public static void move(Square s, double dx, double dy) {

... } // as above

public static void expand(Square s, double factor) {

... } // as above

public static void main (String[] args) {

Square s = new Square();

s.xpos = 1; s.ypos = 1; s.wid = 0.5;

move(s, 1.0, 1.0);

expand(s, 1.5);

System.out.println(s.xpos + " " + s.ypos);

}

}
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Object-oriented programming

We’ve seen how to create objects that encapsulate multiple related pieces of data (e.g.,
the two coordinates of our squares) in a single structure that can be passed around as
a unit. But the operations on these objects still look pretty much like the functions we
have been writing all along; for example, we move a square object by passing it as the
argument to the move method.

Object-oriented languages like Java also support a different way of organizing
programs, in which data and associated operations are packaged together in objects.

� functional style... “Invoke the move method to move s.”

move(s, 1.0, 1.0);

� OO style... “Tell s to move itself.”

s.move(1.0, 1.0);
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Packaging methods with objects

Here is a new Square class incorporating the move and expand methods.

class Square {

double xpos;

double ypos;

double wid;

public void move(double dx, double dy) {

xpos = xpos + dx;

ypos = ypos + dy;

}

public void expand(double factor) {

xpos = xpos - wid * 0.5 * (factor - 1);

ypos = ypos - wid * 0.5 * (factor - 1);

wid = factor * wid;

}}
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Note that, inside the class, the bare field names are used to refer to the values of the
fields of the current object (xpos rather than s.xpos).

Also, note that we drop the keyword static from the headers of the methods.
Intuitively, the methods we have seen so far have been “static” in the sense that they
are associated with classes. The methods we are seeing now are “dynamic” in the
sense that they are associated with individual objects.

This change of terminology signals an important fact. For the moment, all our squares
have the same implementation of the move method; but we should really think of each
square object as choosing its own response to a request to move itself. Later on, we
will see that different square objects can be made to respond to move in completely
different ways.
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Here is an example of the use of the class.

public class test7 {

public static void main (String[] args) {

Square s = new Square();

s.xpos = 0.0; s.ypos = 0.0;

s.move(1.0, 0.0);

s.expand(1.5);

System.out.println(s.xpos + " " + s.ypos);

}

}
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The O-O programming style

In object-oriented programming, the operations on objects are regarded as things that
they do, rather than things that are done to them. (In fact, even the terminology is
different: we speak of an object’s methods as constituting its “behavior.”)

This shift of perspective has far-reaching consequences for software design: it focuses
attention on what things can do rather than on how they are represented.
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Constructors

So far we have used the “default” constructor new Square() to construct a square. The
default constructor takes no arguments and does nothing special with the fields of the
newly constructed object.

A Java class may also include an explicit constructor. This constructor can take
arguments, and can include code for setting the initial values of the fields. For example,
here is another variant of the Square class.
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class Square {

double xpos;

double ypos;

double wid;

Square(double xposv, double yposv, double widv) {

xpos = xposv;

ypos = yposv;

wid = widv;

}

... // code for move and expand methods, as before

}

The constructor looks almost like a method, but its name is the same as the name of
the class. We can use it to create a square like this:

new Square(1.0, 2.0, 3.4)
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Things to note about constructors:

� The constructor has the same name as that of the class.

� There is no declared result type (or, if you like, the result type and the name of the
constructor are rolled into one.)
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For completeness, here is how the three-parameter constructor gets used.

public class test8 {

public static void main (String[] args) {

Square s = new Square(0.0,0.0,1.0);

s.move(1.0, 0.0);

s.expand(1.5);

System.out.println(s.xpos + " " + s.ypos);

}

}
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Using arrays to implement strings

The Java class String is probably implemented using arrays. Alternative
implementations (e.g. lists) are certainly possible. We can use our knowledge of arrays
to implement such a class (except the exceptions).

You will find the class specification in java.lang. The method types and descriptions
given here are taken from the documentation for that class. Among the constructors for
this class is

� public String(char value[])

Allocates a new String so that it represents the sequence of characters currently
contained in the character array argument. The contents of the character array are
copied; subsequent modification of the character array does not affect the newly
created string.

Parameters: value - the initial value of the string.

Throws: NullPointerException - if value is null.
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We can start to build our own string class:

class MyString{

private char [] data;

public MyString(char value[]) {

int i;

data = new char[value.length];

for (i=0; i< value.length; i++) { data[i] = value[i]; }

}

...

}

This allows us to construct strings as follows

char[] catarray = {'c', 'a', 't'};

MyString catstring = new MyString(catarray);
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There are numerous methods listed for the String class. Two important ones are:

� public int length()

Returns the length of this string. The length is equal to the number of 16-bit
Unicode characters in the string.

Returns: the length of the sequence of characters represented by this object.

� public char charAt(int index)

Returns the character at the specified index. An index ranges from 0 to length() - 1.
The first character of the sequence is at index 0, the next at index 1, and so on, as
for array indexing.

Parameters: index - the index of the character.

Returns: the character at the specified index of this string. The first character is at
index 0.

Throws: IndexOutOfBoundsException - if the index argument is negative or not
less than the length of this string.
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class MyString{

private char[] data;

public int length() { return(data.length); }

public char charAt(int i) { return (data[i]); }

...

}
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Another method is

� public String concat(String str)

Concatenates the specified string to the end of this string.

If the length of the argument string is 0, then this String object is returned.
Otherwise, a new String object is created, representing a character sequence
thatis the concatenation of the character sequence represented by this String
object and the character sequence represented by the argument string.

Examples: "cares".concat("s") returns "caress"

"to".concat("get").concat("her") returns "together"

Parameters: str - the String that is concatenated to the end of this String.

Returns: a string that represents the concatenation of this object’s characters
followed by the string argument’s characters.

Throws: NullPointerException - if str is null.
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Here is the code for concat

public MyString concat(MyString s) {

int i;

int j;

char [] temp;

if (s.length() == 0) {return(this);}

// Create array for result

temp = new char[data.length+ s.length()];

// Copy from data

for (i=0; i < data.length; i++) {temp[i]=data[i];}

// Copy from s

for (j=0; j < s.length(); j++) {temp[i]=s.charAt(j); i++;}

// Create the MyString

return new MyString(temp);

}
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Yet another method provides lexicographic ordering:

� public int compareTo(String anotherString)

Compares two strings lexicographically. The comparison is based on the Unicode
value of each character in the strings.

Parameters: anotherString - the String to be compared.

Returns: the value 0 if the argument string is equal to this string; a value less than
0 if this string is lexicographically less than the string argument; and a value greater
than 0 if this string is lexicographically greater than the string argument.

Why this bizarre method of describing the comparison result? A hangover from C.
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public int compareTo(MyString s) {

int i = 0;

int j = 0;

while(i < data.length && j < s.length() && data[i] == s.charAt(j)) {

i++;

j++; }

if (i == data.length && j==s.length()) { return(0); }

if (i == data.length) { return(1); }

if (j == s.length()) { return(-1); }

return(s.charAt(i) - data[i]); // The C hangover

}
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Interfaces

Going back to our Square class, consider the implementation of another simple shape:

class Circle {

double xpos; //coordinates of center

double ypos;

double rad; //radius

Circle(double x, double y, double r) {xpos = x; ypos = y; rad = r;}

public void move(double dx, double dy) {

xpos = xpos + dx;

ypos = ypos + dy;

}

public void expand(double factor) { rad = factor * rad; }

public double diameter() { return(2 * rad); }

}
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Square and Circle are different classes. An instance of Square is not an instance of
Circle and vice versa.

In many situations, we’d like to be able to program in such a way that we can
manipulate instances of either class with the same code. To this end we define a
common interface for both classes:

interface Shape {

void move(double x, double y);

void expand(double f);

Box boundingBox();

}

In the interface we see methods that we expect any shape to possess. The
boundingBox method produces the smallest enclosing rectangle (we’ll define this
shortly); the other methods – move and expand – already exist in both the Square and
Circle classes.

Note that our interface does not include methods like diagonal, which are specific to
one class. Nor does it include fields like xpos whose meaning is different in the two
classes.
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Bounding boxes

First we define a class for a rectangular box.

class Box {

double xpos; // co-ordinates of corner

double ypos;

double wid; // width

double ht; // height

// Constructor

Box(double x, double y, double w, double h) {

xpos = x; ypos = y; wid = w; ht = h;

}

}
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Now we can augment our classes for circle and square with a boundingBox method
and declare that it matches or implements the signature.

class Circle implements Shape {

double xpos;

double ypos;

double rad;

Circle(double x, double y, double r) // as before

public void move(double dx, double dy) // as before

public void expand(double factor) // as before

public double diameter() // as before

public Box boundingBox(){

return(new Box(xpos-rad, ypos-rad, 2*rad, 2*rad));

}

}
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The Square class is similarly augmented:

class Square implements Shape {

double xpos;

double ypos;

double wid;

Square(double x, double y, double w) // as before

public void move(double dx, double dy) // as before

public void expand(double factor) // as before

public double diagonal() // as before

public Box boundingBox() {

return(new Box(xpos, ypos, wid, wid));

}

}
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Note: if we hadn’t added the boundingBox methods, these classes would not have
compiled. By declaring

class Square implements Shape ...

we asserted that the class should match the interface. If it doesn’t the compiler will
complain.
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Using interfaces

Like classes, interfaces can be used as the types of variables.

Shape c = new Circle(0,0,1);

c.move(10,10);

c.expand(2);

Box r = c.boundingBox();

System.out.println(r.xpos + " " + r.ht);

Shape s = new Square(0,0,1);

s.move(10,10);

s.expand(2);

Box t = s.boundingBox();

System.out.println(t.xpos + " " + t.ht);

(The outputs from these two sequences of statements are different — why?)
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Note that the only time we use the classes Square and Circle directly is to construct
objects. Everywhere else, we use the common type Shape.

We can use the interface Shape to write more methods that work equally well on circles
or squares (or any class that implements Shape.)

public static void move_and_expand (Shape s) {

s.move(1,1);

s.expand(2);

}
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Heterogeous arrays

We can construct arrays of “type” Shape and populate them with circles or squares.

public static void main (String[] args){

Shape[] a = new Shape[3];

a[0] = new Square(1,2,3);

a[1] = new Circle(3,4,5);

a[2] = new Square(7,7,8);

for (int i=0; i< 3; i++) {System.out.println(a[i].boundingBox().xpos);}

for (int i=0; i< 3; i++) {a[i].move(2,2);}

for (int i=0; i< 3; i++) {System.out.println(a[i].boundingBox().xpos);}

}
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We can also use Shape in building new “graphics” classes. For example, in graphics
editors we often want to group a collection of objects into one.

class Group implements Shape{

Shape [] contents;

public void move(double x, double y){

for (int i=0; i< contents.length; i++){

contents[i].move(x,y);

}

}

public void expand(double x){

for (int i=0; i< contents.length; i++){

contents[i].expand(x);

} // is this really how expand should work ???

}

public Box boundingBox(){ // code to find the maxima and minima of

// all boundaries of the constituent shapes

}

}

CSE 120 Handout 7 49

'

&

$

%

If we have a variable of type Shape whose current value is an object of type Circle, we
are not allowed to use use data members or methods of the Circle class on this
variable unless they are among the ones described in the interface Shape. In other
words, storing a Circle object in a Shape variable “forgets” that it is really a circle.

For example

System.out.println(s.diagonal)

generates a compiler error.

Let’s look in a little more detail at what’s going on here...
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Subtyping

Notice that the statement

Shape p = new Square(0,0);

assigns a value of type Square to a variable of type Shape.

This is an example of a general mechanism called subtyping (or subtype
polymorphism).

When we declare that a class C implements some interface I, the compiler checks that
the body of C really provides all of the facilities listed in I.

If it does, then C is said to be a subtype of I, and values of type C may be used in any
situation where type I is required.

� a value of type C may be assigned to a variable of type I

� a value of type C may be passed to a method that expects an argument of type I

� etc.

(If it does not, then C’s definition is erroneous and the compiler stops.)
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Note - once again – that the unqualified word polymorphism is ambiguous:

� In OCaml, “polymorphism” means parametric polymorphism — the ability to write
functions that operate uniformly on data of any type. OCaml also has subtype
polymorphism (it is more advanced than other versions of ML in this respect)

� In Java, “polymorphism” means subtype polymorphism—the ability to use objects
of a class C where an interface I is expected, as long as C provides all of the
features described by I.

Java 2 does not allow parametric polymorphism. (A future release of Java will
probably support ML-like parametric polymorphism.)
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Recursive Data Types

Recursive types are types that are defined in terms of themselves. E.g., in ML:

datatype intlist =

Nil

| Cons of int * intlist

We can do something very similar in Java.

class IntList {

int content;

IntList next;

IntList(int h, IntList t) { content = h; next = t; }

}
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We can write head, tail and cons functions that work just as they do in ML. They all
return results.

class IntList {

int content;

IntList next;

IntList(int h, IntList t) { content = h; next = t; }

}

public class test9 {

public static int hd(IntList l) { return l.content; }

public static IntList tl(IntList l) { return l.next; }

public static boolean isNull(IntList l) { return (l==null); }

public static IntList cons(int i, IntList l) {

return (new IntList(i,l));

}

...

}
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What happened to the empty list constructor nil?

There is a special Java value called null which is an instance of every class. It cannot
be confused with any instance that is created by a constructor, so we use this to
represent the empty list.

This explains the code for isNull.

Now we can program with lists just as we do in ML:

public static IntList snoc(int i, IntList l) {

return (isNull(l) ? cons(i,null)

: cons(hd(l), snoc(i,tl(l))));

}

public static IntList reverse(IntList l) {

return (isNull(l) ? null

: snoc(hd(l),reverse(tl(l))));

}
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We also need to print lists:

public static void printIntList (IntList l) {

if (! isNull(l)) {

System.out.print(hd(l) + " ");

printIntList(tl(l));

}

}

This is how we might use these functions:

public static void main (String[] args) {

IntList l = cons(1, cons(3, cons(7, cons(2, null))));

printIntList(reverse(l));

}
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Lists, imperative style

Our lists so far are (like the ones we saw in ML) completely immutable—we can build
and traverse lists, but we cannot change the contents of lists that we’ve already built.

Also our definitions of lists are arguably not very “object oriented,” since all the
functions that operate on lists are placed outside the IntList class.

We will now develop an alternative implementation of lists using methods that (when
appropriate) change the state of the list. If l is a list, they will operate like this:

� l.cons(3) “Cons 3 onto yourself”

� l.hd() “Return your head”

� l.tl() “Change yourself into your own tail”
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Achieving this kind of behavior is a bit tricky.

As a first attempt, we could try to program this by adding methods to our IntList
class...

class IntList {

int content;

IntList next;

IntList(int h, IntList t) { content = h; next = t; }

void tl() {

content = next.content;

next = next.next;

}

}

But this does not work correctly for a one-element list: if next is null, then tl will fail
with a “null pointer exception.”

In other words, we cannot get tl to turn a one-element list into null if we represent
lists in this way.
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The solution is to use two classes.

class IntListCell {

int content;

IntListCell next;

IntListCell(int i, IntListCell n) { content = i; next = n; }

}

class IntList {

IntListCell root;

IntList() { root=null; }

int hd() { return(root.content); }

boolean isNull() { return (root==null); }

void etl() { root = root.next; } //side-effecting tail

void econs(int i) { //side-effecting cons

IntListCell lc = new IntListCell(i, root);

root = lc;

}

}
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The class IntListCell gives us the recursive type. The class IntList has one data
member, root which references the start of a IntList.

We are at liberty to assign null to root.

We used the names econs and etl to indicate that these work by having an “effect”
rather than returning a result.
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Some additional methods

void eappend(IntList l) {

if (root == null) { root = l.root; } //important special case

else {

IntListCell lc = root;

while (lc.next != null) { lc = lc.next; }

lc.next = l.root; }

}

void print() {

IntListCell lc = root;

while (lc !=null) {

System.out.print(lc.content + " ");

lc = lc.next; }

System.out.println();

}
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IntList l1 = new IntList();

IntList l2 = new IntList();

l1.econs(3); l1.econs(4); l1.econs(5);

l2.econs(6); l2.econs(8); l2.econs(6);

l1.print();

l1.etl();

l1.print();

l1.eappend(l2);

l1.print();

l1.eappend(l1);

l1.print(); //What will happen?
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Here’s the output...

5 4 3

4 3

4 3 6 8 6

4 3 6 8 6 4 3 6 8 6 4 3 6 8 6 4 3 6 8 6 4 3 6 8 6 4 3 6 8 6 4 3 6 8

6 4 3 6 8 6 4 3 6 8 6 4 3 6 8 6 4 3 6 8 6 4 3 6 8 6 4 3 6 8 6 4 3 6

8 6 4 3 6 8 6 4 3 6 8 6 4 3 6 8 6 4 3 6 8 6 4 3 6 8 6 4 3 6 8 6 4 3

6 8 6 4 3 6 8 6 4 3 6 8 6 4 3 6 8 6 4 3 6 8 6 4 3 6 8 6 4 3 6 8 6 4

3 6 8 6 4 3 6 ...
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The Object class

Although Java has no parametric polymorphism, there is a class Object which is a
“supertype” of all other classes (and interfaces). What this means is that if we have a
variable of type Object we can assign to it an object of any class whatsoever.

If we replace our ListCell class by

class ListCell {

Object content;

ListCell next;

ListCell(Object i, ListCell n) { content = i; next = n; }

}

and change the types of the methods in IntList appropriately, we can now build lists
containing instances of any class. We’ll call this generic list class List.

Note that, unlike ML, Java lists can be heterogeneous: one list may contain objects of
two or more different classes.
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Not all types are classes

The basic types, int, double, boolean, etc. are not classes. However String (note the
capital ‘S’) is a class. We can therefore build lists of strings. (It is also possible to build
lists of integers etc., by turning integers into objects, but that’s another story.)

public static void main (String[] args) {

List l1 = new List();

List l2 = new List();

l1.econs("three"); l1.econs("four"); l1.econs("five");

l2.econs("six"); l2.econs("eight"); l2.econs("six");

l1.print();

l1.etl();

l1.print();

l1.eappend(l2);

l1.print();

}
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The Java List class

The Java API contains a class LinkedList for mutable lists that bears some
resemblance to what we have implemented. There is also a signature List, which is
implemented by LinkedList, Vector, and ArrayList (the last two implementations are
based on arrays)

If you look at the class LinkedList specification you will find many methods. Here are
some correspondences.

Our List class Java LinkedList class

new List () new LinkedList()

l.isNull() l.size == 0

l.hd() l.getFirst()

l.etl() l.removeFirst()

l.econs(x) l.addFirst(x)

l.append(l1) —

(Apropos append, the Java LinkedList class appears to be designed in such a way
that it is impossible to construct circular lists.)
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The Enumeration Interface

Many data structures represent some kind of collection. A list is one example; a binary
tree is another. (There are also arrays and vectors, which we’ll see in detail later.)
While each of these collection types is different, they have some common aspects. For
example, it is often useful to be able to ask a collection to deliver its members to us in
some order. For this purpose Java provides, in the package java.util, an
Enumeration interface:

interface Enumeration {

boolean hasMoreElements();

Object nextElement();

}

A typical way of using this is (assume v is an instance of some collection class):

java.util.Enumeration e = v.elements();

while (e.hasMoreElements()) {

System.out.println(e.nextElement()); }

Notice that nextElement both changes e and returns a result.
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To add an enumerate method to our List class, we first write an class Enum, which
implements Enumeration. The enumerate method constructs an appropriate instance
of this class and returns it.

class ListEnum implements java.util.Enumeration {

ListCell lc;

ListEnum(List l) { lc = l.root; }

public boolean hasMoreElements() { return( lc != null ); }

public Object nextElement() {

Object o = lc.content;

lc = lc.next;

return o; }

}
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Using an enumeration object

public static void main(String[] args){

List l1 = new List();

l1.econs("interesting");

l1.econs("getting");

l1.econs("is");

l1.econs("Java");

java.util.Enumeration e1 = new ListEnum(l1);

while (e1.hasMoreElements()) {

System.out.print(e1.nextElement()+" "); }

System.out.println();

}

CSE 120 Handout 7 69

'

&

$

%

Another Example

public static void main(String[] args) {

List l2 = new List();

l2.econs(new Square(0,0,1));

l2.econs(new Circle(0,3,1));

l2.econs(new Square(0,8,2));

java.util.Enumeration e2 = new ListEnum(l2);

while (e2.hasMoreElements()) {

Object o = e2.nextElement();

Shape g = (Shape) o;

g.move(0,1); }

}

Note the use of the coercion (or down-cast) (Shape) o. This is a declaration to the
typechecker that we “know” that the actual type of the object stored in o at run time will
be Shape. At compile time, the typechecker just believes what we tell it (so the result
type of this expression is Shape). At run time, it double-checks whether the object is
really a Shape and raises an exception if it is not.
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